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Abstract— This paper presents a multi-radar spoofing detection
framework based on PointNet++ and Plug-and-Play (PnP) point cloud
registration. The method first extracts hierarchical geometric features
of multi-radar point clouds using PointNet++, which are embedded into
PnP optimization to achieve robust cross-radar alignment. On this basis,
we propose DB-PointNet++, which combines DBSCAN clustering and
density-aware feature enhancement to construct feature-rich point cloud
representations for discriminating genuine and spoofed data. Experi-
mental results on a simulated dataset demonstrate that the framework
achieves an accuracy of about 92% in binary classification (genuine vs.
spoofed), with an ROC AUC of 0.836, and reaches TPR=88.9% and
FPR=34.1% at the optimal operating point. In comparison, the four-
class task (genuine, A/B/C spoofed) yields an overall accuracy of 70.5%,
where Genuine and B-spoofed achieve the highest recognition rates (82 %
and 78%), while A- and C-spoofed remain confusable. Further validation
on the nuScenes real-world dataset shows performance degradation due
to sparse radar points: binary classification accuracy drops to about
529% with an AUC of 0.680; in four-class detection, B-spoofed achieves
an AUC of 0.751, whereas A- and C-spoofed only reach 0.672 and
0.701. Overall, the proposed framework demonstrates strong robustness
in high-resolution scenarios. Binary detection is more suitable for real-
time safety-critical deployment, while four-class classification, though less
accurate, provides spoof-source attribution and lays the foundation for
further multi-sensor fusion and temporal-consistency enhancements.

Index Terms— Autonomous driving, Automotive radar, Point cloud
registration, Spoofing detection, Dual-supervised learning, Radar dataset.

I. INTRODUCTION

Sensing suites of autonomous and advanced driver-assistance
systems (ADAS)-equipped vehicles include cameras, LiDARs, and
radars [1]-[5]. Radars provide robustness in adverse weather and
poor lighting conditions, long operation ranges, and direct velocity
measurements [6]-[8]. Therefore, their performance is critical for
the success of any automotive application [9]-[11]. The reliance
of autonomous driving (AD)/ADAS vehicles on sensing capabilities
introduces inherent vulnerabilities to malicious threats [12]. While
most prior security research has concerned conventional cyberse-
curity [13], the sensing layer exposes Automated Driving System
(ADS)/ADAS to additional threats that extend beyond software and
network domains [14]. Classical physical attacks on sensors, such as
denial-of-service (jamming) [15], [16] and deception (spoofing and
false-data injection) [17], [18], have been widely studied [15]. It was
demonstrated that an attacker can compromise perception, degrade
vehicle control, and even cause severe accidents [19]. In response,
multiple detection and mitigation strategies against jamming and
spoofing in automotive radars have been proposed [15], [17].

The recent adoption of deep neural network (DNN)-based pro-
cessing [20], [21] for cameras, LiDARs [22], and more recently for
radars [23]-[26] has also introduced a new class of vulnerabilities,
where small perturbations to the input data can result in large and
unexpected output errors [27]-[29]. For radar perception, DNNs
have significantly improved target detection [30]-[33], parameter
estimation [34], [35], tracking [31], [36], and classification per-
formance [37]-[40]. Therefore, protecting these DNN-based radar
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Figure 1: Schematic illustration of the considered scenario in which a
malicious adversary attacks the victim’s automotive radar by injecting
spoofing signals. As a result, the radar detects a false pedestrian
position (marked in red), while the actual pedestrian is located
elsewhere (marked in blue).

functions against adversarial attacks is critical and urgent for the safe
deployment of radar-enabled ADAS/AD applications.

Adversarial attacks on cameras [41], [42] and LiDARs [43], [44],
where attackers manipulate physical-world objects or access the DNN
data, have been recently extensively studied in the literature [29],
[41], [42], [45]. However, adversarial threats to radar perception
remain largely unexplored [27], [46], [47], leaving a critical gap
in ADS/ADAS security. Unlike conventional jamming or spoofing,
which typically generate interference signals detectable by well-
studied radar electronic countermeasures (ECCM), adversarial per-
turbations can remain covert, because they are embedded within
the expected signal structure. Such perturbations might not trigger
interference alarms, making them stealthier and potentially more
dangerous than conventional spoofing and jamming attacks.

Autonomous and ADAS-equipped vehicles typically utilize mul-
tiple radars with overlapping fields of view [9]. This redundancy
allows cross-validation of radar measurements, providing opportu-
nities for detecting deceptive attacks [48], [49]. Statistical analysis
and machine learning (ML)-based approaches for detecting classical
deceptive attacks have been proposed in the literature, evaluating
inconsistencies across radar measurements [50]. However, due to
the complexity of automotive environments, dynamic object motion,
and inherent measurement noise and uncertainty, these conventional
methods often struggle, especially against precisely crafted deception
attacks involving target position and orientation [51]-[53].

Addressing these challenges, this paper proposes an innovative
radar spoofing detection method based on deep learning, leveraging
inconsistencies among multi-radar sensor measurements. A realistic



autonomous vehicle scenario is simulated using the Unity software
platform [54], generating a comprehensive dataset containing both
authentic and spoofed radar-generated point clouds. Building upon
this dataset, we introduce the DB-PointNet++ deep learning frame-
work, which combines the PointNet++ network architecture [55]—
[57] for point cloud feature extraction with density-based spatial
clustering of applications with noise (DBSCAN) [58], [59]. The DB-
PointNet++ model employs a dual-supervised learning mechanism,
capturing both local geometric details and global spatial consistency
among radar measurements, thereby accurately identifying anomalies
induced by spoofing attacks. While PointNet++ has been widely
utilized in computer vision for 3D object recognition and point cloud
segmentation, to our knowledge, this research represents its first
application to automotive radar spoof detection.

Furthermore, this paper develops and releases a multi-radar spoof-
ing simulation dataset that incorporates diverse deceptive scenarios
and radar resolutions. This dataset enables systematic analysis of how
spoofing intensity and radar resolution affect detection performance,
and serves as a valuable benchmark for future research on radar
spoofing defense.

The main contributions of this work are summarized as follows:

« We propose a novel PointNet++ & Plug-and-Play (PnP) based
registration framework that enables robust cross-radar point
cloud alignment and feature extraction, effectively addressing
the limitations of conventional ICP-based methods.

o We design DB-PointNet++, which integrates DBSCAN cluster-
ing and density-aware feature enhancement with PointNet++,
constructing a feature-enriched point cloud representation for
improved spoofing detection.

« We conduct extensive experiments on a simulated dataset, where
the framework achieves about 92% accuracy in binary classifica-
tion (area under the curve (AUC)=0.836) and 70.5% in four-class
classification, demonstrating both strong detection capability and
spoof-source attribution.

o We validate the approach on the nuScenes real-world dataset,
revealing performance degradation due to sparse radar mea-
surements (binary accuracy ~52%, AUC=0.680). These results
highlight the challenges of real-world deployment and provide
insights for future multi-sensor fusion and temporal-consistency
enhancements.

o We release a high-fidelity, multi-radar simulation dataset gener-
ated with the Unity engine, covering displacement- and rotation-
based spoofing scenarios across multiple resolutions, which can
serve as a benchmark for subsequent research.

The findings of this research are expected to advance the develop-
ment of robust defenses against radar sensor spoofing attacks, thereby
contributing to safer and more reliable autonomous driving systems.

The remainder of this article is organized as follows. The problem
addressed in this work is introduced in Section II. Section III intro-
duces the proposed DB-PointNet++ multi-radar spoofing detection
approach. The generated dataset of radar point clouds is introduced
in Section IV. The performance of the proposed multi-radar spoofing
detection approach is evaluated in Section V. Our conclusions are
summarised in Section VI.

II. PROBLEM DEFINITION

In modern automotive radar systems, environmental perception
relies heavily on high-resolution radar point clouds [60], [61]. How-
ever, despite their advanced sensing capabilities, such radar sensors
remain susceptible to targeted physical-layer spoofing attacks. These
malicious attacks deliberately manipulate the sensor’s perception
of the environment, thereby severely degrading radar performance

and potentially causing accidents due to erroneous environmental
interpretation.

In this study, we address the problem of detecting radar spoofing
attacks through the deployment of a multi-radar sensor system.
Specifically, we investigate a scenario depicted in Fig. 1, in which
an attacker injects falsified information regarding object positions,
orientations, and extents into one of the radar sensors, thereby
corrupting the point cloud data generated by that sensor.

We focus on a representative automotive scenario as shown in
Fig. 2, in which the vehicle is equipped with three strategically
positioned radars to ensure comprehensive environmental coverage
from multiple viewpoints. These radars are mounted at the front
roof area and arranged with a 90° angular separation, forming a
robust and redundant sensing configuration. Consequently, the radar
directly facing the attacker receives manipulated signals and produces
distorted point cloud data. In this scenario, only one radar is subjected
to malicious signal injection at any given time, while the other two
radars acquire accurate and unaltered point cloud representations of
the scene. Moreover, the vast majority of the scene’s point cloud
remains unaffected in terms of position or orientation; the attack
selectively targets points corresponding to pedestrians or vehicles,
introducing position offsets or angular rotations. Such adversarially
manipulated data exhibit significant inconsistencies when compared
to the outputs of the two unaffected radars.

The vehicle coordinate frame is denoted as Jy . Three radars
t € {M, R, L} are mounted near the front roof area of the vehicle,
forming a right-angle layout: the lines connecting the Right and Left
radars to the Middle radar satisfy Z(tr —¢ar, tr —tar) = 90°. Each
radar has calibrated extrinsic parameters T} = [RY | t)] € SE(3),
mapping radar coordinates to the vehicle frame:

xV =R/ x" +t). 1)

At time step k, radar ¢ returns a point set P; = {p;n}. After
instance-level clustering (pedestrian, vehicle, etc.), we obtain an
object set O, where instance o observed by radar i is represented by
centroid p7, covariance XY, and radar-specific measurements such
as radial velocity v, ; and RCS ;.

Under static or quasi-static conditions, the representation of the
same object in the vehicle frame should be consistent:

m{  =R/p}+t/, m{r~mj, Vi#jo0c0. (2
~~

in vehicle frame

Likewise, 67 denotes the geometric orientation of object o, 0§ = 9;’,
d? ~ dj, and after compensating ego-motion V.g,, the projected
velocities uj should match.

In each attack instance, only one radar a € {M,R,L} is
compromised. The attacker manipulates a subset 2 C O (mainly
pedestrians/vehicles) via a rigid transformation A € SE(3) (position
displacement/rotation), while leaving the majority of the background
points unchanged:

po—Apd, 07+ 05+ A0, di<+do+Ad, oeQ. (3
The other two radars 7 # a and the unaffected objects o ¢ Q
follow Hy. This induces noticeable cross-view inconsistencies for

the attacked radar, concentrated on specific semantic classes.

After transforming each instance observation into the vehicle
frame:

my = R i+t 07 =07,

D! =d], ul= vfyi—(Rz‘V)vegoﬂ,
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Figure 2: The figure shows a three-radar configuration on the vehicle
roof, including a front-middle radar (radar middle) and two lateral
radars (radar right and radar left). The angle formed by the lines
connecting the two lateral radars to the central radar is 90°, resulting
in a right-angle layout. This arrangement facilitates cooperative
detection by multiple radars, significantly improving the accuracy
and coverage of object detection through the fusion of radar data
from different perspectives. Consequently, it reduces blind-spot risks,
making it particularly suitable for ADAS.

define for any two radars i # j and instance o the vector residual:

m; — mj
Lo |ae wrap(67 — 07)
Y| aa(Dy-D3) |’

ay (uf — ug)

where wrap(-) maps angles to (—m, 7] and «. are scaling weights,
which are determined based on the magnitude of each quantity
and empirical validation experiments, balancing the contribution of
different features to the consistency metric. Given the measurement

noise covariance X7;, define the Mahalanobis consistency score:

o o\T o\—1_o
sy = (x;) (235)” i C))
Under Hy and Gaussian noise, sfj ~ Xi’ where d is the dimension
of r.

Aggregate the pairwise scores for each radar:

Si= > wosy, )

Ve OGOij
where O;; is the set of instances observed by both ¢ and j, and w,

are confidence/point-count weights. Under the single compromised
radar assumption, the attacked radar a satisfies Sq, > Sp, b # a:

max S;, declare attack if Sz > 7. 6)

a4 = arg
i€{M,R,L}

The threshold 7 can be set via x* approximation or validation to
control the false alarm rate «; robust statistics can be applied to
reduce occlusion-related outliers.

To mitigate the detrimental effects of radar spoofing attacks,
we propose an innovative neural network—based detection approach
specifically designed to identify adversarially manipulated point
cloud data. Furthermore, the proposed method exploits radar-specific
metadata embedded within the point clouds to determine which radar
sensor has been compromised. Our approach is grounded in the
principle of multi-view spatial consistency, enabling the extraction

of robust features from radar point clouds for reliable authenticity
assessment. By leveraging cross-view discrepancies among multiple
radars, the proposed technique substantially enhances the radar sys-
tem’s resilience to sophisticated spoofing attacks, thereby contributing
to safer autonomous driving environments.

III. THE PROPOSED APPROACH

This section introduces DB-PointNet++, a dual-supervised frame-
work for spoofed radar point clouds detection in multi-radar systems.
It combines point-level supervision via DBSCAN and cluster-level
supervision via PointNet++, achieving enhanced detection accuracy
and robustness in complex scenarios.

Fig. 3 shows the processing flow of the proposed spoofing detection
approach, containing three major components. First, the Registration
block, detailed in Subsection A, aligns point clouds obtained from
radars “A” and “C”, PC4 and PCc, to the radar “B” coordinate
system and merges them with the PCp to create a unified point
cloud, PC. Second, the Heuristic spoofing Detection block, detailed
in Subsection B, pre-labels points as “real” or “spoofed” based
on cross-radar consistency, generating labeled point cloud PC’.
Then the Clustering block partitions PC” into k sub-clusters using
DBSCAN, followed by the Density Compute block that appends
local density features to create augmented clusters, PCY, ..., PC}/.
Finally, the Merge block consolidates all sub-clusters into PC”,
which is classified by the third, PointNet++ Classification block, to
identify which radar is spoofed, as detailed in Subsection C.

A. Point Clouds Registration

Point cloud registration is a fundamental challenging task, partic-
ularly in the presence of noise, occlusions, and incomplete data [62].
As illustrated in Fig. 3, this subsection describes the first processing
module, which aims to achieve robust global alignment for complex
point clouds. To address these challenges, we propose a fusion-
based framework that integrates deep feature extraction through
PointNet++ with a probabilistic PnP optimization strategy [63]-[65].
Specifically, the PnP framework incorporates a learned denoising
module—implemented via PointNet++—to implicitly encode prior
knowledge of geometric structures. This design enables the registra-
tion process to benefit from both explicit data-driven regularization
and feature-level guidance, thereby substantially enhancing robust-
ness against various types of degradation. In scenarios where one
of the three radars is compromised, the corresponding point cloud
may contain anomalous or abruptly appearing spoofed points. Within
the proposed framework, the registration procedure prioritizes the
geometric regions jointly and consistently observed by all radars,
thereby anchoring the alignment to structurally reliable features.
Consequently, the anomalous observations contributed by the attacked
radar are transformed together with the global rigid motion, yet they
exert negligible influence on the final registration outcome.

Despite its widespread adoption, the iterative closest point
(ICP) [66]-[68] algorithm suffers from several fundamental limita-
tions that restrict its applicability in challenging scenarios. It is highly
sensitive to initial alignment, often converging to local minima and
resulting in suboptimal registration accuracy. Moreover, because ICP
relies solely on nearest-neighbor correspondences, it fails to capture
higher-level structural or semantic features within the point cloud,
making it vulnerable to noise, outliers, and partial observations [69].
The absence of global or topological constraints further diminishes its
robustness, especially when dealing with large-scale or structurally
complex data. These issues collectively highlight the necessity for
more advanced registration frameworks that can incorporate prior
knowledge and adapt to varying data quality.
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Figure 3: Schematic representation of the proposed DB-PointNet++ for radar point cloud processing. First, the point clouds from radars “A”
and “C” are registered to the coordinate system of radar “B” and merged into a unified point cloud. A heuristic-based spoofing detection
module then preliminarily labels each point as “spoofed” or “real” based on its spatial relationship with points from the other radars. Next,
DBSCAN is used to cluster all detections, and each cluster is analyzed to compute a density feature for every point within it. These features
are appended to the original point features to form an augmented merged point cloud, which is finally classified by PointNet++ into “spoofed”

or “real”.
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Figure 4: Schematic representation of point cloud registration, per-
formed in two stages. In Stage I, PointNet++ is trained to classify
radar scenes into object categories. The latent space of PointNet++
is then used as an additional feature for the PnP algorithm. In Stage
1I, the weights obtained from PointNet++ in Stage I are “frozen,”
and a global feature aggregation module generates high-level feature
representations. These features are subsequently employed as prior
knowledge to guide the denoising optimization of each point and
are used by the PnP algorithm for point cloud registration. The
registration process iteratively refines the alignment until the loss
function between corresponding point clouds converges.

In contrast to conventional ICP, which directly minimizes Eu-
clidean distances in Cartesian space, the PnP framework reformu-
lates point cloud registration as a maximum a posteriori (MAP)
estimation problem [70]. This probabilistic approach enables the
incorporation of learned priors—such as geometric consistency or
smoothness—through a denoising module. As a result, the opti-
mization becomes more adaptive to data characteristics, converges
more rapidly, and exhibits substantially reduced sensitivity to poor
initialization. By leveraging these priors, the PnP framework is also
better equipped to escape local minima and achieve more reliable
alignment, particularly in the presence of complex structures, noise,
or incomplete observations.

Although traditional ICP methods utilize least-squares minimiza-
tion and singular value decomposition (SVD) [71]-[73], their reliance
on explicit spatial correspondences fundamentally limits robustness
to large initial misalignments and increases susceptibility to local
optima. Even when enhanced with deep features such as those
extracted by PointNet++, ICP essentially remains a local optimizer:
it cannot recover globally consistent solutions without a favorable
initialization [74]. The underlying objective is still confined to
minimizing point-wise distances, lacking the flexibility to integrate
learned priors or semantic information. Consequently, in scenarios
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involving noise, sparsity, or ambiguous geometries, ICP—regardless
of feature augmentation—often delivers unstable or suboptimal reg-
istration outcomes.

As illustrated in Fig. 4, the proposed framework significantly
improves both the accuracy and stability of point cloud registration,
particularly in multi-view or multi-sensor scenarios. The core objec-
tive is to align source point clouds PC'4 and PC¢ to a common
reference frame established by the target point cloud PCg , through
the estimation of optimal rigid transformations—specifically, rotation
and translation parameters that best preserve the underlying geometric
structures.

To enable feature-driven registration, PointNet++ is employed
to embed each input point cloud into a higher-dimensional space
enriched with latent geometric features. Formally, we define a feature
extraction mapping as f : RV*3 — REXGHE) 'where N denotes the
number of input points with spatial coordinates [x,y, z]7, L is the
number of sampled key points, and K represents the dimensionality
of the learned feature descriptor appended to each point. The resulting
L x (3+ K') matrix thus captures both spatial and feature information
for robust correspondence estimation as illustrated in Fig. 5.

For the input point clouds PC'4, PCp, and PCc¢, the representa-
tive key point sets PC 4/, PCps, and PC¢: are obtained using far-
thest point sampling (FPS) [75]. Each sampled set is then processed
by PointNet++ to obtain feature-augmented point representations:

A = f(PC4), B=f(PCp), C=f(PCc),

AB.GCepieio D



where f(-) denotes the feature extraction mapping performed by
PointNet++, L is the number of sampled key points, and K is the
dimension of the learned feature descriptor appended to each point.

For feature correspondence, let 1:&1 € R3*TX denote the~feature
descriptor of the i-th key point in A (i.e., the i-th row of A). The
corresponding point in PCp- is determined by searching for the index

*

j* in B that minimizes the Euclidean distance:
2

j* = argmin HAZ - B;j (8)
J

where Bj represents the feature descriptor of the j-th key point in
PCp/, and j* is the index of the nearest neighbor in the feature
space.

If the minimum feature distance exceeds a specified threshold
7 that is continuously adjusted through experimental results, the
candidate correspondence is discarded:

- -2
If min HAl - B; H > 7, then discard the pair. ()]
J

In the above, PCs, PCp, and PCcr are the sampled key point
sets; A, B, and C are the feature matrices produced by PointNet++;
Ai is the feature descriptor of the i-th key point in PC4/; B B; is
the feature descriptor of the j-th key point in PCpg/; j* denotes the
index of the nearest neighbor; and T is the feature distance threshold

used to control correspondence reliability.

The observed coordinates of the source point clouds A and C, as
well as the target point cloud B, are modeled as noisy measurements
of their true underlying positions. The observation model can be
formulated as:

y? - TaX? + €i,a
yi =X +€ip
yf = Tcx'f + €i,c

e, ~ N(0,5°T) (10)

where y¢, y?, and y¢ denote the observed (noisy) coordinates of the
i-th point in source clouds A, C and target cloud B, respectively;
X7, x?, and x{ are the corresponding true (noise-free) coordinates; 75,
and T are the unknown spatial transformations from source clouds A
and C' to the target frame (including rotation and displacement); and
€i,as €i,b, and €; . are Gaussian noise terms simulating measurement
errors.

The overall objective is to jointly estimate the spatial transforma-
tions T, T. and the true point locations {x¢}, {x¢}, {x?}, such
that the aligned point clouds A, C, and B are maximally consistent
while preserving reasonable internal structure via prior constraints.
This leads to the following optimization problems:

[Z d(Tux{, x}) Zlogp x{) — Zlogp(x?)]
Z d(T x5, x Z log p(x3) — Z Ing(XZZ)]

an

where T, and T, are the unknown spatial transformations, x{, x5,
and x? are the true (denoised) coordinates, d(-, -) denotes the distance
metric, p(-) is the prior probability describing geometric regularity,
and log p(-) ensures the prior is combined in a MAP framework.

min
Ta, {x3}, {xb}

min
Te, {x§}, {x}}

To quantify the alignment error between transformed and target
point clouds, the chamfer distance is used to measure the distance

between the transformed point cloud A, C and B:

dehamter (A', B) = ||a . — | b—d|?
1
dehamfer(C'y B) = — mln ¢ ="+ == min ||b— ¢
CRE 2; I U+ Z min b |
(12)

This distance is symmetric and penalizes both missing points and
outliers in both the source and target point clouds. In the definition
of Chamfer distance, A’ and C’ denote the source point cloud after
spatial transformation, and B is the target point cloud. |A|, |C| and
| B| represent the number of points in each cloud, respectively. For
each point a’ in A’, ¢/ in C’, the Chamfer distance computes the
squared Euclidean distance to its nearest neighbor in B, and averages
this over all points in A’, C’. Similarly, for each point b in B, it
computes the squared Euclidean distance to its nearest neighbor in
A’ and C’, and takes the average.

In the alternating optimization scheme, the first step involves fixing
the current denoised point coordinates x;' k. xf’k, and xb k  and
optimizing the spatial transformations 75, and 7. by minimizing the
registration loss:

T = arg rr%}ln Z d (Taxf’k7 x?’k)
1

13
TH = arg rr%in Z d (Tcxf’k7 x?’k) =
1
where k denotes the current iteration, and d(-, -) is the distance metric
measuring alignment error between the transformed source and target
points.

In the subsequent step of the alternating optimization, the spatial
transformations 7, and 7. are fixed, and point cloud denoising is
performed to enhance the quality of the latent coordinates via prior
information:

ak+1_D ( ak)

KA = D, (x0) (14)

K3

xf’kH =D, (ka)
In the denoising process, the features extracted by PointNet++ are
used as prior knowledge to guide the optimization of each point’s
denoising. The denoising operator D, (-) has a parameter o that
controls the strength of the denoising, typically related to the assumed
noise level. At iteration k, x**, x»* and x¢* represent the current
coordinates, while the denoised updates are given by x;" kL xli”k“,
and x&F
The complete alternating optimization process can be compactly
described by the following PnP gradient update rule:

o (xk) — xk]

o (X)) — %]

X(Iz+1 = XZ - aavxd(TaxZ>XZ) + ﬁa [D

c c c (15)
Xp+1 = X — acvxd(Tckaxz) + ﬁﬂ [D

In this PnP gradient update formula, x; denotes the coordinates of
the point cloud at the k-th iteration, and « is the learning rate, which
controls the update step size. Vxd(Tux{, xk) and Vxd(Tex§, xk?)
are the gradient of the registration loss with respect to the point cloud
coordinates, indicating the direction to minimize the alignment error.
Do (xy) is the denoised version of the point cloud, so Do (xx) — X
represents the gradient direction given by the denoising prior.

As shown in Fig. 6, the radar point clouds are captured using
their respective independent coordinate systems, with each radar
system collecting data from different physical locations, resulting
in scattered data. This leads to disorganized point cloud data, as



(a) Raw point clouds.

(b) Registered point clouds.

Figure 6: Example of point cloud alignment: (a) The original input
point clouds from three radars with partial overlap (green point cloud
from Radar A, red point cloud from Radar B, and blue point cloud
from Radar C); (b) The registered point clouds aligned to the common
reference frame of Radar B.

depicted in Fig. 6a. Due to the differences in the coordinate systems
of each radar, the spatial positions of the point clouds are misaligned,
making it difficult to directly compare or merge the data from
different radars. These discrepancies in coordinate systems cause
inconsistent distributions of the point clouds, uneven density, and
even the possibility of overlap or gaps in the data. In order to align
these point clouds and unify them into a global coordinate system,
precise point cloud registration is necessary. By using a trained
registration model, the point clouds can be iteratively optimized,
gradually achieving accurate alignment, as shown in Fig. 6b. This
ensures that the point clouds are reliably aligned, providing a solid
foundation for subsequent analysis and processing.

To further assess the stability of the proposed PnP framework under
varying spoofing intensities, we plot convergence curves at injection
rates of 0%, 10%, 20%, and 30% (Fig. 7). The x-axis represents
iteration steps, while the y-axis denotes the registration loss (Chamfer
distance) during testing. The “injection rate” is defined as the ratio of
spoofed points injected to the number of genuine points in the original
cloud. The results show that under clean conditions (0% injection)
the model converges rapidly to a low residual, while higher injection
rates lead to slower convergence and higher residuals; nevertheless,
the framework consistently exhibits a stable decreasing trend. This
robustness arises from formulating registration as a MAP estimation
and embedding a learned denoiser, which makes the optimization
less sensitive to initialization and more resistant to spoofed or outlier
points. By integrating denoising priors and feature-level guidance, the
PnP framework significantly improves resilience against cross-view
inconsistencies and poor initialization, and empirically converges
stably across injection rates.

In summary, the proposed registration framework alternates be-
tween optimizing the spatial transformation parameters and denoising
the point clouds based on prior knowledge. This iterative process con-
tinues until the registration error falls below a predefined threshold or
convergence is achieved, thereby ensuring accurate and robust align-
ment of the input point clouds. During registration, the framework
primarily relies on the regions jointly observed by all three radars that
remain unaffected by spoofing, while the compromised radar points
are simultaneously transformed as part of the global rigid motion. The
complete algorithmic workflow is presented in Algorithm 1, which
systematically outlines each step of the procedure.

B. Point Clouds Classification and Feature Extraction

This subsection systematically presents a heuristic point-level
labeling strategy based on multi-radar spatial consistency, followed by
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Figure 7: Convergence curves of the proposed PnP framework under
different spoofing injection rates (0%, 10%, 20%, 30%). The x-axis
denotes the iteration steps and the y-axis indicates the registration
loss (Chamfer distance) during testing. Higher injection rates lead
to slower convergence and higher residuals, yet the PnP framework
consistently achieves stable alignment.

DBSCAN-based clustering and density-aware feature extraction. This
approach is specifically tailored to leverage the spatial distribution
properties of multi-radar point cloud data, thereby enhancing both
the robustness and accuracy of spoofing detection.

In the fused point cloud, each point is treated as a core point,
around which a spherical neighborhood with a predefined radius is
constructed. In this study, the neighborhood is defined solely based
on the Euclidean distance in the 3D spatial domain (z, y, z), without
considering the normal vector components (N, Ny, N.). Based on
the typical inter-radar detection deviations observed in the dataset,
the neighborhood radius is empirically set to 0.3 meters.

To preserve the source information of each point, a unique radar
identifier (Radar ID) is assigned to every radar, which is then
converted into a neural-network-compatible vector feature using one-
hot encoding. For example, the three radars correspond to the vector
forms [1, 0, 0], [0,1, 0], and [0, 0, 1], thereby avoiding any unintended
interpretation of numerical magnitude relationships between cate-
gories. The authenticity of each core point is evaluated by examining
whether its neighborhood N (p) contains corresponding detections
from both of the other radars, as indicated by distinct Radar IDs.

Formally, for each point p € PC, its spherical neighborhood is
defined as:

N(p) ={q € PC|llq —pl2 <r, radar_id(q) # radar_id(p)} ,
(16)
where r is the neighborhood radius, and radar_id(-) denotes the
radar identifier of a point. The point-level label I, is assigned as:

1, if |{radar_id(q) | ¢ € N(p)}| =2

lp =42, if |{radar_id(q) | g € N(p)}| =1 (17)

0, otherwise

That is, if the neighborhood N (p) contains points from both of the
other two radars, the point p is labeled as “real” (I, = 1); if N(p)
contains points from only one of the other two radars, p is labeled
as “spoofed but not caused by this radar” (I, = 2); otherwise, p is



Algorithm 1: Plug-and-Play Registration for Multi-View
Point Clouds via PointNet++
Require: Source point clouds PC4, PCc; Target point cloud
PC'p; Feature extractor f(-); Denoising network D, (-);
Distance metric d(-,); Threshold 7; Max iterations Kmax;
Tolerance €
Ensure: Estimated rigid transformations 7y, T¢; aligned point
clouds A’, C’
1: Keypoint Sampling: For each point cloud PC4, PCpg, PCc,
sample L keypoints using FPS, obtaining PC4/, PCpg/, PCcr.

2: Feature Extraction: Compute feature-augmented matrices
A = f(PCu), B = f(PCpg), C = f(PCcr), where f(-) is
PointNet++.
3: Feature Matching:
: for each keypoint ¢ in A and C do
5. Find nearest neighbor index j* = argmin; ||A — B;]|?
(similarly for C).

6:  if min; ||A — B;||?> > 7 then
7: Discard correspondence (,j")
8 else
9:
10:  end if
11: end for
12: Initialization:
13: Initialize denoised coordinates x*°, x*°, x° from PC/,
PCpg/, PCqr.
14: for k = 0 to kmax do
15:  (A) Rigid Registration Step:
16:  Estimate T°"! = argming, d(Tox®",x"*) using
correspondences M 4;
17:  Bstimate 7% = arg ming, d(T.x%*, x>*) using M¢;
18:  Apply 75+ T*+1 to update coordinates for A, C;
19:  (B) Denoising Step:
20:  Update denoised coordinates: x**+! = D, (x**);
21: xPFF = D, (xPF);
22:  x%Fl = D, (x%F);
23:  (C) Convergence Check:
24:  Compute registration loss
Ly = d(Tf+1Xa’k+l7Xb'k+l) + d(TCIC+1XC’k+1,Xb’k+1)
25 if |Ly — Lig—1| < € then
26: break
27:  end if
28: end for

29: Output final transformations 7T, = T,f“, T. = Tf“, and
aligned/denoised point clouds.

labeled as “spoofing” (I, = 0).

Fig. 8 demonstrates this clustering procedure. Fig. 8a shows a case
where the point under test is surrounded by multiple neighboring de-
tections from the other two radars. Thus, this detection is considered
highly reliable and labeled as “real”. In Fig. 8b, the cluster on the left
indicates that the test point lacks point cloud data from one of the
radars, suggesting that it may belong to a spoofed radar point cloud,
but the spoofing was not caused by this radar. The cluster on the right
shows that the test point lacks neighboring detections from both of
the other radars, indicating that it is more likely a spoofed point,
with the spoofing primarily occurring in the point cloud of this radar.
According to the proposed heuristic method, such points are labeled
as “spoofing” (I, = 0) if the spoofing is primarily caused by this
radar, or as “spoofed but not caused by this radar” (I, = 2) if spoofing

originates from another radar. As a result of this process, the unified
point cloud PC is transformed into a preliminarily labeled version,
PC’, which serves as input for the following DBSCAN clustering.

DBSCAN partitions the labeled point cloud, PC’, into a set of
k clusters: PCY, PC5, ..., PCy.. The number of the clusters, k, is
determined by the data distribution and the selected parameters, € and
minPts. For each cluster, the average ratio of class-specific points
is calculated based on the initial point-level labels (I, € {0,1,2})
assigned to the points in the PC’. Specifically, for each cluster, PC},,
generated by DBSCAN, the average ratio of real points is calculated

as follows: 1

’
pEPCY,

=1), (18)

where I, € {0,1,2} is the label of point p (1 for “real”, 2 for
“spoofed but not caused by this radar”, 0 for “spoofing”), |PCj|
is total number of points in cluster PCj, and I(-) denotes the
indicator function. It is important to note that points labeled as
l, = 2 are deliberately excluded from the real-point ratio calculation.
Including such points would implicitly assign credibility to data
segments that, although unaffected by the current radar, still originate

Add (2,j") to correspondence set M. (similarly for Mc) from spoofed regions. This would artificially inflate the estimated

authenticity, thereby increasing the risk of misclassification. In safety-
critical domains such as autonomous driving, such overestimation
could lead to severe consequences, including potentially catastrophic
traffic accidents.

Additionally, for each point, p; € PCj, the local point density
within its spherical neighborhood is calculated as:

>

piEPCY, i#j

D;=log |1+ Ll = pill, <) ) o (19

where ¢ is consistent with the DBSCAN clustering parameter, and
the logarithmic transformation is applied to compress the value range
in high-density regions. The local densities D; are normalized to the
range [0, 1] as:
b — D; — min(D)
77 max(D) — min(D)

€[0,1], (20)

where D = {Di}‘iilc’l“l is the set of local densities for all points

within the considered cluster. Finally,}he cluster-level real-ratio, Ry,
and point-level normalized density, D;, are combined to define the
final density weight for each point as:

wa(j) = RiD; 1)

which provides a localized assessment of point authenticity by captur-
ing the distribution of label types within the cluster’s neighborhood.
This weighting scheme emphasizes points that are both locally dense
and belong to clusters with a high proportion of “real” points, thereby
reinforcing spatial consensus as an indicator of authenticity.

Through this process, each cluster is enriched with local-
ized, density-aware features, resulting in enhanced sub-clouds,
PCY,PCY,...,PCy. These enriched sub-clouds are then merged
into a refined, feature-augmented point cloud, PC"”. In the data
authenticity verification stage, the point cloud, PC", is normalized
to ensure consistent representation across all feature dimensions,
thereby facilitating effective downstream model training. Each point
retains its 3D spatial coordinates and is further augmented with
rich feature descriptors, including surface normals. These enhanced
features are processed in PointNet++, which performs hierarchical
feature extraction for ultimate robust spoofing detection.
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Figure 8: DBSCAN-based spatial consistency verification concept,
exemplifying real and spoofed detections in (a) and (b), respectively.

C. Spoofing Detection

This subsection presents the third stage of the processing pipeline,
with the aim of detecting the spoofed radar. The merged and
aligned point cloud, PC”, is classified into four categories: gen-
uine (no radar is spoofed), Radar A-spoofed, Radar B-spoofed,
and Radar C-spoofed. The unified point cloud PC"” is repre-
sented as an 8-dimensional feature representation, p € R%: p =
(z,9,2, Nz, Ny, N, lp, wq), where I, € {1,2,0} denotes the pre-
liminary point-level label (1: real; 2: spoofed but not caused by
this radar; O: spoofing) assigned by the heuristic detection module
(Section III-B) and wq is the local density weight computed using
DBSCAN clustering in (21). This feature construction approach
effectively preserves spatial and geometric information, while in-
tegrating local structural characteristics and global consistency de-
scriptors. These comprehensive features provide the network with
strong discriminative capability for spoofing detection. Compared
to conventional point cloud descriptors, this enriched representation
enables the network to capture both fine-grained geometric variations
and global density anomalies associated with spoofing attacks, which
is crucial for robust multi-radar spoofing detection.

Table I outlines the architecture of the PointNet++ network, which
is designed to perform fine-grained classification of the merged
and aligned point cloud PC” into four categories: genuine, Radar
A-spoofed, Radar B-spoofed, and Radar C-spoofed. The network
processes an input consisting of 1024 eight-dimensional points (each
with 3 spatial coordinates and 5 additional features). Initially, these
points are sampled and grouped in the SA; step, reducing them
to 512 centroids. Each centroid aggregates 32 neighboring points,
producing a tensor of the shape, (512,32,8). Local features are
extracted via a PointNet module, resulting in an output tensor of
the size, (512,131), with 3 spatial coordinates and 128 features.
A subsequent sampling and grouping step, SAs, reduces these to
128 centroids, each again grouping 32 neighboring points, yielding
a tensor of the shape, (128,32,131). Another PointNet module
extracts higher-level features, producing an output tensor of the size,
(128, 259) with 3 spatial coordinates and 256 features. Finally, in the
third set abstraction step, S As, these 128 local features are globally
aggregated via global pooling into a single vector of size, (1,1024),
capturing the overall feature representation of the point cloud. This
global feature is then passed through three fully connected layers
(FCy : 1024 — 512, FC5 : 512 — 256, and F'C3 : 256 — 4),
which progressively transform the feature for four-class classifica-
tion. The final output is a (1,4) tensor representing the predicted
probabilities for each class.

To further ensure that the network effectively utilizes the newly
introduced features [, and wq, an auxiliary regression head is inserted
after the second set abstraction (S As) layer of the PointNet++ archi-
tecture, which outputs local feature representations Fo € R128%259,
We perform global mean and max pooling across all points, resulting
in a 259-dimensional mean vector Smean and a 259-dimensional max

Table I: Hierarchical architecture of the PointNet++ classification
network, processing a point cloud of 1,024 points with 8-dimensional
features per point.

Module Input (Pts x Ch) Output (Pts x Ch)
Input 1024 x (3+5) 1024 x (3+5)
SA; 1024 x (3+5) 512 x (3+128)
S A2 512 x (3+128) 128 x (3+256)
SAs 128 x (3+256) 1 x 1024
Global Feature 1 x 1024 1024

FCy 1024 512

FCy 512 256

FCs 256 4

Vector Smax. These two vectors are concatenated to form a 2 x 259
statistical descriptor, which captures both average and most prominent
feature activations across all local regions. This vector is then passed
through a lightweight fully connected network to predict two global
statistics of the input point cloud: the mean and the maximum value of
the wy feature, denoted as fi.,, and 771,,. The auxiliary regression
loss, defined as the sum of mean squared errors (MSE) [76], [77]
between the predicted and ground-truth global statistics, is formulated
as:

Laux = MSE(ftw,, fwy) + MSE (1w, Maw, ), (22)

where ., and m., denote the true mean and maximum values
of wqg in the input point cloud. The training objective of DB-
PointNet++ consists of two components: a main classification loss
and an auxiliary regression loss. The total loss is defined as

L= Lmain + )\Laum A=0.1. (23)

For the four-class spoofing detection task, we adopt the categorical
cross-entropy loss. Given the predicted logits z; for sample ¢ and the
corresponding softmax probability

(e)
@ _ €7

pi (k) ? (24)
Dkey €
the main loss is written as
1
- o (c)
Limain = N Z E:M‘{yZ = c} logp,”. 25)

i=1 ceY

This loss penalizes the negative log-likelihood of the ground-truth
class. Theoretically, Lman € [0,00), Where Lmain = O indicates per-
fect classification and larger values correspond to greater prediction
errors. During training, the loss typically converges to a small positive
value as the network improves.

To enhance feature robustness against varying point densities,
we introduce an auxiliary regression task that supervises the global
statistics of point-wise density weights wq. The network predicts both
the mean [i,,q and the maximum 7,4, which are compared with the
ground-truth statistics (fwd, Mwa) by the mean squared error:

Laux = (ﬂw(i - ,uwd)2 + (mwd - mwd)2- (26)

Since MSE is non-negative, we have Laux € [0, 00), with lower values
indicating better alignment between predicted and true statistics.
The total loss L combines the two terms, where the auxiliary
regression loss is scaled by A = 0.1 to avoid dominating the
optimization process. This formulation ensures that the primary
training signal comes from classification, while the auxiliary loss
provides regularization and improves generalization under diverse
spoofing scenarios. As a result, the overall loss function provides both
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(a) In this scenario, radars “B” and “C” operate normally and yield
consistent pedestrian point clouds. Radar “A” is spoofed, resulting in
a positional displacement of the detected pedestrian, leading to spatial
misalignment with the normal cluster.
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(b) In this scenario, radars “A” and “C” function correctly and capture
consistent vehicle point clouds. Radar “B” is spoofed via an angular
attack, causing the detected vehicle point cloud to be rotated and
misaligned from the genuine cluster.

Figure 9: Radar Point Cloud Inconsistency under Spoofing Attacks

discriminative learning for spoof detection and structural robustness
to density variations in radar point clouds.

Given a unified point cloud PC” = {p; | pi € R%i =
1,..., N}, each point is characterized by an 8-dimensional vector
p: = (zi,Yi,2i, No,iy Nyiy N2 iy lpi,wa,i). The feature extraction
and classification process proceeds as follows:

1. Set Abstraction and Local Feature Learning. In each set abstrac-
tion (SA) layer, a subset of points is sampled to serve as centroids,
and local neighborhoods are constructed:

¢ = FarthestPointSample(P'~V, KV), (272
NP = {p e PO |l = <+ a7y
£ = PointNet ({p: — " [pi e NV }) . @70)

where P~ denotes the set of input points to the [-th SA module,
KU denotes the number of centroids sampled at the i-th set abstrac-
tion layer, r® the neighborhood radius, and C;~l) the j-th centroid.

2. Hierarchical Feature Aggregation. The local features are pro-
gressively abstracted through stacked SA modules (e.g., SA1, SAz,
S As), yielding feature tensors of decreasing spatial resolution but
increasing feature richness:

F1 = SAl(po), (288.)
F; = SA;(Fy), (28b)
F3 = SAg(FQ) (280)

with F3 € R'*1924 representing the global point cloud descriptor.

3. Global Feature Fusion and Classification. The global descriptor
F'3 is passed through a sequence of fully connected layers for final
classification:

h; = ReLU(W;F; + by), (29a)
h, = ReLU(W32h; + by), (29b)
hs = Wshs + bs, (29¢)

o = softmax(hs), (29d)

where o € R? provides the class probabilities for genuine, Radar
A-spoofed, Radar B-spoofed, Radar C-spoofed.

This work uses a PointNet++ model for detecting cyber attacks on
automotive radar point clouds. Although PointNet++ has been widely
used in 3D object scene classification and segmentation [78]-[80], as
far as we are aware, PointNet++ has not been specifically reported

for radar spoofing detection. The network is trained from scratch on a
custom multi-radar simulated dataset using supervised learning with
cross-entropy loss and a step-based exponential decay learning rate
schedule.

IV. RADAR DATASET

This section details the dataset generated for the performance
evaluation of the proposed spoofing detection approach. The multi-
angle, multi-scenario spoofed radar point cloud dataset is generated
using the Unity software. This dataset was generated by considering
three radars positioned at different angles and locations to capture
point cloud data from the same scene synchronously. In addition,
the influence of the radar resolution on the spoofing capabilities
is evaluated by considering radars with low- and high-resolution
of 5,000 — 10,000 and 30,000 — 50,000 detections per frame,
respectively.

The scenarios in which one of the radars is compromised by
spoofing are investigated, where the spoofing effects are simulated
not only as positional displacements of radar targets but also as
variations in their detected orientations. Specifically, angular spoofing
is modeled by rotating the target around the vertical (Z) axis by
different degrees, thereby emulating sophisticated attack patterns
that distort both location and heading information, as may occur in
real-world automotive environments. Fig. 9 illustrates representative
examples of such simulated attacks. In Fig. 9a, spoofing is realized
through a positional shift, where the spoofed radar “A” detects the
pedestrian at a displaced position relative to the genuine detections
from radars “B” and “C.” In contrast, Fig. 9b demonstrates angular
spoofing, in which radar “B” operates normally, but the spoofed radar
perceives the vehicle’s point cloud as rotated due to an artificial
transformation about the Z-axis. To enhance realism and diversity, the
simulated dataset includes multiple object categories—such as walk-
ing and running pedestrians, vehicles, and static obstacles—thereby
representing the complexity of dynamic urban environments.

The low-resolution imaging radar considered in this study has a
measurement range of up to 100 meters and operates with a two-
dimensional angular resolution of 2° x 0.4° across a field of view
(FOV) of 120° x 30°. For each frame, this configuration generates
5,000 to 10,000 detection points, effectively simulating the sparse
data typically produced by entry-level automotive radars in wide-area
surveillance tasks. In contrast, the high-resolution imaging radar is
configured with an extended measurement range of 200 meters and
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Figure 10: Representative example of the simulated measurements
of the high- and low-resolution radars, in subplots (a) and (b),
respectively.

a finer 2D angular resolution of 0.2° x 0.1°, maintaining a FOV
of 120° x 25°. This radar produces substantially denser point cloud
data, with 30, 000 to 50, 000 detections per frame, reflecting the data
richness achievable with state-of-the-art advanced imaging radars.
Representative examples of both high- and low-resolution radar point
clouds are presented in Fig. 10, where Fig. 10a corresponds to the
high-resolution radar and Fig. 10b illustrates the low-resolution case.

Each radar frame in the dataset includes the (x,y, z) coordinates
of detected points, the three components of the normal vector, the
preliminary label [,,, and the density weight wg. The normal vectors
are estimated using principal component analysis (PCA) [81], [82]
applied to local neighborhoods, with parameter choices adapted to
the radar resolution. For low-resolution radars, a larger neighborhood
size is used to ensure robust estimation under sparse point density,
whereas for high-resolution radars, a smaller neighborhood is adopted
to preserve fine-grained geometric details. To simulate position
spoofing, the location of the spoofed object in the attacked radar is
displaced by 2, 5, 10, or 20 meters from its true position. In addition,
angular spoofing is modeled by rotating the spoofed object within the
attacked radar’s view by 30°, 45°, or 90° about the vertical (Z) axis,
thereby altering the apparent orientation of the target in the point
cloud. These manipulations enable a comprehensive evaluation of the
detection approach under varying spoofing perturbation magnitude
and attack modalities. To the best of our knowledge, this is the first
simulated automotive radar point cloud dataset to comprehensively
cover both positional and angular spoofing across diverse real-world
scenarios and multiple sensor resolutions. In total, a dataset of 30 GB
was generated through simulation.

V. PERFORMANCE EVALUATION

This section provides a comprehensive evaluation of the proposed
DB-PointNet++ framework for radar spoofing detection. A diverse set
of performance metrics is employed to assess its effectiveness across
various automotive radar scenarios, covering both high- and low-
resolution configurations as well as multiple spoofing perturbation
magnitude.

The evaluation relies on standard classification metrics—detection
accuracy [56], Fl-score [83], recall [84], false positive rate
(FPR) [85], and false negative rate (FNR) [86]—to quantitatively
assess the framework’s capability in identifying spoofed radar point
clouds. These metrics are chosen because accuracy provides an
overall measure of recognition correctness, recall and FNR reveal the
model’s ability to capture true attacks and avoid missed detections;
FPR reflects the system’s robustness in rejecting genuine samples and
ensuring practical applicability; and the F1-score balances precision
and recall, which is particularly important under class imbalance
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Figure 11: Validation performance of the proposed DB-PointNet++
framework on the simulated radar dataset. The figure illustrates a
steady increase in validation accuracy accompanied by a consistent
decrease in validation loss over 100 epochs, indicating stable conver-
gence and effective model learning.

in spoofing detection tasks. Together, these metrics provide a com-
prehensive assessment of both the strengths and limitations of the
framework. Beyond radar resolution, we further examine the influence
of different target types. Specifically, vehicles and pedestrians are
selected as representative classes, and both position-displacement
and angular-rotation spoofing attacks are applied to them. This setup
enables a thorough analysis of the model’s robustness against diverse
attack modalities.
a) Per-class confusion accounting
We consider a single-label multi-class setting with C' classes. For
any class ¢ € {1,...,C}, we adopt a one-vs-rest view to define true
positives T'P,, false positives F' P, true negatives T'N., and false
negatives F'N.. All class-wise metrics below are computed from this
four-tuple.
b) Accuracy
Detection accuracy is the most straightforward metric:

N
Acc = % ; {9 = yi}, (30)
where N is the number of test samples, ¢; the prediction, and y; the
ground truth.
¢) Recall/TPR, FNR, Precision, FPR

For a binary classifier with true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN), we use the standard
definitions:

TP FN
TPR=rprm ™M =gp gy -1 TPR G
TP FP
Precision = ————— FPR= — . 2
recision TP 1 P’ R FP + TN (32)

These denominators are the numbers of positive and negative cases
and are nonzero in our setting; hence no numerical stabilizer is
required.
d) Multi-class extension (one-vs-rest)
For a class c in a K-class problem, we form a one-vs-rest reduction
by treating c¢ as the positive class and all other classes as negative,



yielding TP., FP., TN, FN.. We then reuse the binary formulas:

TP, B
TPRC = m, FNRC =1 TPRC, (33)

iy TP, _FP,
PreClSlOnc = m, FPRC = FPL T TNL . (34)

If TP. + FN. = 0 (no positive instances) or FP. + TN, = 0 (no
negative instances), the corresponding metric is undefined and the
class is excluded from the aggregate.
e) Averaging
When reporting a single summary across classes, we use macro
averaging Metricmacro = % Zle Metrice.
f) Fl-score
The class-wise F1-score, used throughout this study, is defined as
the harmonic mean of precision and recall:

Fl, — 2Prec. Rec. 2T P,

" Prece + Rec. 2TP.+ FP.+ FN,’

It jointly penalizes both false positives and false negatives, providing
a balanced measure of detection accuracy.
g) Final evaluation metric.

Among the defined metrics, we adopt the Macro-F1 score as the
primary criterion for model comparison, since it jointly penalizes
false positives and false negatives while treating all classes equally.
For each class ¢, the Fl-score is computed as

2 Prec. Rec.

(35)

Flo= 77—, 36
Prec. + Rec. + ¢ (36)
and the macro-average is obtained by
1 &
M -Fl=— Fi.. 37
acro ol ; 37

The experimental findings yield valuable insights into the prac-
tical deployment of the DB-PointNet++ framework in real-world
autonomous driving. The results demonstrate that the proposed
framework substantially enhances the robustness of radar perception
systems against spoofing attacks, thereby contributing to safer and
more reliable autonomous navigation.

A. Performance Testing of Simulated Radar Dataset

To evaluate the performance of the proposed DB-PointNet++
framework, we first conducted experiments on a simulated radar
dataset generated using Unity. This dataset encompasses diverse
spoofing scenarios, including both position displacement and angu-
lar rotation attacks, applied across low- and high-resolution radar
configurations. By providing a controlled yet realistic approximation
of real-world conditions in autonomous driving, the dataset enables
a thorough and reproducible assessment of the model’s spoofing
detection capability under varying environmental dynamics.

We initially formulated spoofing detection as a binary classification
problem, aiming to distinguish whether a radar point cloud was gen-
uine or spoofed. This simplified setting established a clear baseline
for assessing the core discriminative capability of DB-PointNet++,
without the added complexity of identifying which radar unit was
compromised. We then extended the task to a more demanding
multi-class formulation, requiring the model to differentiate between
genuine samples and three distinct spoofing sources (A, B, and C).
Finally, we conducted a direct comparison between binary and multi-
class detection to evaluate how increasing task complexity impacts
overall detection performance.

V-Al Binary Classification: Genuine vs. Spoofed Point Clouds

To establish a baseline for evaluating spoofing detection, we first
formulated the task as a binary classification problem. In this setting,

the objective is simply to determine whether a radar point cloud
is genuine or spoofed. This formulation isolates the fundamental
discriminative capability of DB-PointNet++, allowing us to assess
its ability to capture spoofing-induced anomalies without the added
complexity of multi-class attribution.

The validation dynamics of the model are illustrated in Fig. 11.
Validation accuracy rises sharply during the first 20 epochs and
gradually stabilizes, converging to approximately 95% after 100
epochs. At the same time, validation loss decreases consistently and
plateaus in the later stages. These complementary trends demonstrate
both stable convergence and strong generalization, confirming that the
model effectively captures discriminative features from the simulated
dataset. The validation set plays a key role in this process, as it
is independent of the training data and serves to monitor progress,
identify potential overfitting, and guide model selection and threshold
calibration.

Beyond overall detection performance, we further investigated
how spoofing type and radar resolution affect detection outcomes,
as summarized in Fig. 12. Fig. 12a—d correspond to displacement
attacks, while Fig. 12e-h depict rotation attacks. The results reveal
that radar resolution has a decisive impact: high-resolution radars
consistently outperform low-resolution counterparts, especially under
small displacements and rotations. In high-resolution settings, detec-
tion accuracy exceeds 90% even under large perturbations, whereas
low-resolution configurations often remain below 70% and exhibit
substantially higher FPR and FNR. These findings emphasize that
fine-grained spatial detail is critical for reliable spoofing detection.

A clear difference is also observed between displacement- and
rotation-based spoofing. Rotation attacks are generally more difficult
to detect, as their effects on local orientation and object geometry
often remain plausible to the model. For instance, displacement
attacks of 20m (Fig. 12c—d) can still be identified with reason-
able accuracy even in low-resolution pedestrian settings, whereas
90° rotations (Fig. 12g-h) remain challenging. This highlights that
displacement introduces more distinct cross-radar inconsistencies,
making it relatively easier to capture, while rotation perturbations
yield subtler anomalies that complicate detection.

Target type further influences detection performance. As shown in
Fig. 12a, c, e, and g, vehicle spoofing achieves consistently higher
accuracy and lower error rates than pedestrian spoofing, shown in
Fig. 12b, d, f, and h. Vehicles, owing to their larger size and rigid
geometric structure, produce more stable point cloud signatures,
facilitating robust detection. Pedestrians, by contrast, generate fewer
reflection points and greater variability, especially in low-resolution
radar, leading to degraded accuracy and more frequent misclassifica-
tions.

Finally, we identify a consistent trend with attack magnitude across
both displacement and rotation scenarios. Detection performance
improves as displacement increases from 2m to 20m and as rotation
grows from 30° to 90°. Under stronger perturbations, test accuracy
and recall rise while both FPR and FNR decline. This indicates that
larger spoofing disturbances introduce more pronounced anomalies in
radar point clouds, which the DB-PointNet++ framework can more
effectively exploit.

V-A2  Multi-Class Classification: Genuine vs. Spoofed from

Radars A/B/C

To further increase task complexity, we reformulated spoofing
detection as a multi-class classification problem. In this setting, the
model was required not only to determine whether a radar point cloud
was genuine or spoofed, but also to localize the spoofing source by
identifying attacks targeting radar A, B, or C. This task formulation
better reflects real-world adversarial conditions in autonomous driv-
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Figure 12: Classification performance of DB-PointNet++ under diverse spoofing scenarios, including displacement and rotation attacks on
vehicles and pedestrians with both high- and low-resolution radar configurations, evaluated on a simulated radar dataset. The results show
that high-resolution radar consistently outperforms low-resolution radar, especially under small perturbations, achieving accuracies above
90% for large displacements and rotations. In contrast, low-resolution settings often fall below 70%, with substantially higher FPRs and
FNRs. Moreover, rotation-based spoofing is generally more challenging to detect than displacement-based spoofing, as rotated point clouds
can still resemble plausible object orientations, whereas displacement introduces clearer spatial inconsistencies.

ing, where both accurate detection and precise attribution are critical
for effective mitigation.

Fig. 13 presents the four-class confusion matrices (rows: ground
truth; columns: prediction; N = 1,000). Subfig. 13a shows the
absolute prediction counts, with the diagonal summing to 705,
yielding an overall accuracy of 70.5%. Errors are concentrated among
the spoofed classes: Radar A—spoofed is most often misclassified
as Radar B—spoofed or Radar C—spoofed (45 and 40 instances),
while Radar C—spoofed is confused with Radar B—spoofed and Radar
A-spoofed (49 and 35 instances). By contrast, spoofed samples
incorrectly labeled as Genuine are relatively few (A/B/C — Gen-
uine: 15/11/11). Subfig. 13b reports the row-normalized percentages,
highlighting relative error patterns independent of class size. Here,
Genuine and Radar B—spoofed achieve the highest per-class accu-
racies (82% and 78%), whereas Radar A-spoofed and Radar C—
spoofed remain less separable, dominating residual misclassifications.
These results indicate that while the detector is reliable in identifying
whether spoofing is present, it is less effective in localizing which
radar is compromised. The comparatively strong performance of
Radar B may be attributed to its placement and field of view, which
provide more stable coverage of primary objects.

The overall classification performance of DB-PointNet++ is fur-
ther evaluated using the receiver operating characteristic (ROC)
curve [87], [88], as shown in Fig. 14a. The ROC curve lies well above
the diagonal random baseline, achieving an AUC of 0.836, which
indicates moderate discriminative capability between genuine and
spoofed radar point clouds. This result validates DB-PointNet++ as a
reasonable baseline model; however, it also reveals a limitation—its
current level of performance remains insufficient for safety-critical
autonomous driving scenarios, where extremely low false-alarm rates

and high operational reliability are mandatory.

Two representative operating points are highlighted. The
Youden point (orange marker)—the threshold maximizing (TPR —
FPR)—achieves TPR = 88.9% and FPR = 34.1%, representing a
balanced compromise that correctly detects nearly 89% of spoofing
attacks while missing approximately 11%. Although statistically
acceptable, such a miss rate would be problematic in safety-critical
contexts. In contrast, the business-priority point (red cross) follows
a conservative design principle of “better false alarms than missed
detections,” attaining TPR = 96.3% at the expense of FPR = 50%.
This configuration is more suitable for a preliminary screening mod-
ule that prioritizes recall, where subsequent refinement—rvia sensor
fusion, temporal consistency checks, or physics-based plausibility
validation—can effectively reduce false alarms downstream.

Fig. 14b compares the discriminative responses of DB-PointNet++
to displacement-based (blue) and rotation-based (orange) spoofing
attacks. The displacement curve consistently remains above the ro-
tation curve across most thresholds, confirming stronger separability
for displacement perturbations. Quantitatively, displacement achieves
an AUC of 0.906, surpassing 0.852 for rotation. Since AUC reflects
global discriminability, this difference indicates that displacement
attacks introduce more pronounced geometric inconsistencies among
cross-radar observations, making them easier to identify. The per-
formance gap is particularly notable in the low-FPR region (e.g.,
FPR < 0.1), where the displacement curve rises sharply and yields
higher true positive rate (TPR), suggesting that displacement spoofing
can be detected more reliably under strict false-alarm constraints.

This discrepancy originates from inherent geometric character-
istics. Displacement directly perturbs inter-radar correspondences,
producing visible misalignments and larger registration residuals. In
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Figure 13: Confusion matrices of DB-PointNet++ evaluated on the simulated dataset. Subplot (a) shows the absolute prediction counts, while
subplot (b) presents the row-normalized percentages, highlighting the relative distribution of misclassifications across different spoofing
categories. These results demonstrate that under ideal simulation conditions, the model achieves high accuracy with limited confusion

between genuine and spoofed samples.

contrast, rotation tends to preserve pairwise distances and local point
density structures. Small-angle rotations are often masked by sensor
noise, and object symmetries—such as those found in vehicles or
pedestrians—further obscure the distinction. Consequently, the model
exhibits inherently lower sensitivity to rotation-based spoofing.

To further examine class-wise separability, Fig. 14c illustrates the
one-vs-rest (OvR) ROC curves. All curves lie distinctly above the
random baseline, confirming that the model achieves meaningful dis-
crimination across spoofing categories. The corresponding AUC val-
ues are 0.825 for B-spoofed, 0.767 for A-spoofed, and 0.751 for C-
spoofed, yielding the ranking B-spoofed > A-spoofed ~ C-spoofed.
In the low-FPR region, the B-spoofed curve rises more sharply, main-
taining a higher TPR under stringent false-alarm constraints, whereas
the A- and C-spoofed curves increase more gradually—indicating that
conservative thresholds disproportionately suppress recall for these
two classes. Overall, DB-PointNet++ exhibits strong performance in
coarse-level “attack vs. no-attack” discrimination but shows reduced
effectiveness in fine-grained spoof-type attribution. For safety-critical
deployment scenarios emphasizing low FPR, improving the recogni-
tion of A- and C-type spoofing should therefore be prioritized.

We also assess detection performance under varying spoofing
magnitudes in Fig. 15. As shown in Fig. 15a and Fig. 15d, accuracy
consistently improves with attack strength, regardless of whether
the perturbation is translational or rotational. For instance, accuracy
rises from 64.5% at 2m displacement to 83.5% at 20m, and from
63.5% at 30° rotation to 80.5% at 90°. This does not imply
stronger attacks are trivial; rather, larger perturbations introduce
more pronounced violations of geometric consistency—centroid and
neighborhood translation or orientation and normal rotation—that
amplify separability and reduce uncertainty, yielding more stable
decision boundaries.

Resolution further reinforces this phenomenon. Across all sce-
narios, high-resolution radars outperform low-resolution ones. High-
resolution data provide denser, more detailed point clouds that
preserve fine-grained structures, enhancing the stability of geometric
and density-based features. This additional detail allows the model

to capture spoofing-induced anomalies more effectively, leading to
substantial performance gains. In contrast, low-resolution radars
produce sparse, noisy point clouds in which subtle perturbations are
easily masked, making spoofing detection more difficult.

Target category also impacts detection. Vehicles, with their
larger reflective surfaces and stable geometry, produce stronger
and more consistent signatures, making spoofing effects more ev-
ident—especially under high resolution. Pedestrians, by contrast,
generate weaker and noisier reflections with smaller spatial footprints,
leading to greater susceptibility to noise and lower separability. This
gap is especially pronounced under low-resolution settings, where
pedestrian spoofing often overlaps with background noise, resulting
in degraded accuracy. These findings suggest that spoofing detection
for small, weak-reflection targets remains particularly challenging and
may benefit from integrating temporal or Doppler features.

A direct comparison of displacement- and rotation-based spoof-
ing further underscores these differences. As shown in Fig. 15a
and Fig. 15d, translation-based spoofing consistently outperforms
rotation-based spoofing under equivalent conditions. For example, in
high-resolution vehicle experiments, accuracy reaches 83.5% under
20m displacement but only 80.5% under 90° rotation. This per-
formance gap stems from the more salient geometric disruptions
introduced by translation compared with the smoother, lower-saliency
variations of rotation. At lower resolutions, rotational perturbations
become even harder to distinguish from noise, further widening the
gap.

Error-rate analysis provides additional insight. Fig. 15b and
Fig. 15¢ show FPR and FNR under displacement, while Fig. 15e
and Fig. 15f show the corresponding rotation results. In all cases,
both metrics decrease as spoofing intensity increases, confirming that
stronger attacks are easier to detect. The largest improvements occur
in high-resolution vehicle scenarios, where FPR falls from about 55%
to 23% and FNR from 15% to below 10%. Low-resolution pedestrian
cases remain weakest, with FPR only dropping from 60% to 55% and
FNR from 35% to 29%. When comparing attack types, displacement
achieves greater reductions than rotation, consistent with its stronger
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these results validate DB-PointNet++ as a solid baseline for spoofing detection, while highlighting areas needing improvement for safety-

critical deployment.

geometric impact.

Overall, displacement spoofing outperforms rotation spoofing in
both FPR and FNR. High-resolution radars consistently yield stronger
results than low-resolution ones, and vehicles are more reliably
detected than pedestrians due to their larger radar cross-sections and
more stable reflective structures.

Finally, Fig. 16 illustrates the evolution of classification error,
F1 score, and recall under displacement spoofing. As displacement
increases, vehicle detection consistently outperforms pedestrian de-
tection, especially under high resolution, with lower errors and
higher Fl/recall. Pedestrian detection under low resolution, however,
remains limited, with persistently high errors and suppressed recall.

Under high-resolution conditions, both displacement and rotation
lead to marked improvements as spoofing intensity increases. For
example, vehicles under displacement reduce classification error from
35.5% to 16.5%, with F1 reaching 75% and recall 88%. Pedestrians
also improve, but less substantially, with classification error dropping
from 58.5% to 44%. Under rotation, vehicles achieve a minimum
classification error of 20% at 90°, while pedestrians remain at 25%.
In low-resolution settings, improvements are smaller: vehicles under
displacement reduce classification error from 45.5% to 33.5%, while
pedestrians improve only from 47.75% to 42%. Similar trends hold
under rotation, though improvements are again weaker than for
displacement. These results emphasize that displacement produces
more discriminative geometric anomalies, vehicles are inherently
more detectable than pedestrians, and high-resolution radar provides
the strongest performance gains.

Fig. 17 summarizes the test-set results: overall accuracy = 65%,
macro-averaged precision = 62%, recall = 79%, and F1 = 69%.
The error profile includes classification error = 35%, macro-averaged
FPR = 49%, and macro-averaged FNR = 21%, corresponding to
specificity of 51%. Overall, the model operates in a high-recall
but low-precision regime—sensitive to attacks with few misses but
prone to false alarms. This trade-off may be acceptable for safety-
critical contexts, but when stricter false-positive control is required,
strategies such as threshold tuning, probability calibration, cost-

sensitive learning, or hard-negative mining can reduce FPR while
preserving recall.

In summary, DB-PointNet++ demonstrates strong spoofing detec-
tion ability in simulation, particularly for displacement-based and
vehicle-focused scenarios under high-resolution radar. However, per-
formance degrades for rotation-based spoofing, pedestrian targets, and
low-resolution conditions. While the model achieves high recall, its
relatively high FPRs highlight the need for improved feature design,
multi-modal fusion, or cost-sensitive training to enhance precision
and robustness for real-world deployment.

V-A3 Comparative Analysis of Binary and Multi-Class Tasks

To further assess the robustness of the proposed detector, we
systematically compare binary and multi-class classification schemes.
This analysis quantifies the performance trade-off when moving from
a simplified binary formulation to a more demanding multi-class
framework, thereby revealing the challenges of fine-grained spoofing
attribution.

At first glance, collapsing multiple spoofing categories into a single
“attack” label should reduce decision complexity and thus improve
detection accuracy, as suggested by

p(attack) = 1 — p(no_attack)

38
= p(A attacked) + p(B attacked) + p(C attacked). (38)

From this perspective, the binary setting appears advantageous.
However, the experimental evidence shows a more nuanced picture
that depends critically on radar resolution and attack type.

As illustrated in Fig. 18a, accuracy patterns diverge across condi-
tions. Under displacement attacks, multi-class classification particu-
larly benefits pedestrian detection at high resolution (65% vs. 57%
for binary), while vehicle performance remains comparable across the
two schemes. Under rotation attacks, binary classification is favored
at high resolution (approximately 76% vs. 72% for multi-class),
whereas multi-class yields a modest advantage at low resolution.

These trends are reinforced by the classification error in Fig. 18b:
binary classification consistently achieves lower error in high-
resolution settings, while multi-class becomes favorable at low res-



0.4

—=— H-Res Veh 0.7
~ & H-Res Ped = —=— H-Res Veh —#— H-Res Veh
—ogl o LResVeh - ~ & -H-Res Ped e ~ & -H-Res Ped
R [ 7 L-ResPed — 06k & —=— L-Res Veh S e —#— L-Res Veh
2 *\;j: . - — @ -L-Res Ped 03} e = =% -L-ResPed |
£ TEEE R —— —
3 B
207 — 05 — I
P S SRR
'g g —=2 e 02 B
2 04t £ -\ -
Rosh T o " T e
01k i S
03 -
0.5 1 1 1 1 T \\.
2 5 10 20
Spoofing Displacement Distance[m] 02 ; ; 1‘0 2'0 0.0 é ; 1'0 2‘0
. . Spoofing Displacement Distance[m Spoofing Displacement Distance[m
(a) Detection Accuracy under Spoofing Dis- pooting s m] pooting Bisp [m]
placement (b) FPR under Spoofing Displacement (c) FNR under Spoofing Displacement
080 |- —w—H-Res Veh ] 0.40
- & -H-Res Ped =—H-Res Veh —=—H-Res Veh
075 F L-Res Veh 06 —®~H-Res Ped . - ® - H-Res Ped
§ L-Res Ped L - [N t'ﬁes I\’/edh 035 L-Res Veh
= L S -Res Pe L-Res Ped
§0.70 - - - 030 |
§ . =05 |
2065 s S0
g - £ =
5 0.60 - ) Z
3 P =020 |
- ([ 2
Sossk 04}
2> 015 |
0.50 010 F
L L .

30° 45° 90° 03

Spoofing Rotation Angle [°]

(d) Detection Accuracy under Spoofing Ro-
tation

Spoofing Rotation Angle [°]

(e) FPR under Spoofing Rotation

30° 90°

45°
Spoofing Rotation Angle [°]

(f) FNR under Spoofing Rotation

Figure 15: Detection performance of DB-PointNet++ under varying spoofing intensities evaluated on a simulated radar dataset. The plots
report detection accuracy, FNR, and FPR for both displacement- and rotation-based attacks. Results show that detection accuracy increases
with spoofing magnitude—from 64.5% at 2m displacement to 83.5% at 20 m, and from 63.5% at 30° rotation to 80.5% at 90°. This trend
arises because stronger perturbations more severely disrupt geometric consistency across multiple radars, thereby enhancing separability

between genuine and spoofed point clouds.

olution—especially for pedestrians. A similar resolution-dependent
pattern emerges for recall (Fig. 18c) and FNR (Fig. 18d). When data
quality is high, the binary setting provides higher recall and fewer
misses, indicating well-separated decision boundaries. In contrast,
under degraded inputs, the multi-class setting offers more balanced
recall and reduced FNR, reflecting greater resilience to low-resolution
noise.

Taken together, these results indicate that the superiority of bi-
nary versus multi-class classification is conditional, not absolute.
Quantitatively, the binary setting achieves substantially higher overall
accuracy (about 92%) than the four-class setting (about 70.5%).
Although the multi-class accuracy is non-trivial and provides use-
ful attribution, the resulting gap can be critical in safety-centric
applications: in autonomous driving, even moderate increases in
error translate into unacceptable risk. Accordingly, we position DB-
PointNet++ as a first-stage screener in practice: operate the front
end in binary mode with high recall to cover potential attacks,
and then apply downstream refinement—temporal-consistency and
physics-based plausibility checks, multi-sensor fusion, and targeted
training strategies (e.g., hard-example mining and class re-weighting
for A/C)—to suppress false alarms and stabilize type-level decisions.

Binary detection delivers the highest top-line accuracy and recall
in high-resolution regimes, making it preferable for real-time, safety-
critical deployment. Multi-class detection, while less accurate overall,
can offer robustness in low-resolution scenarios and provides valuable
attribution for offline analysis. A pragmatic deployment strategy is
therefore to prioritize binary screening for fast, high-recall coverage,

followed by lightweight attribution and verification modules that
enforce temporal, geometric, and multi-modal consistency.

B. Performance Testing of nuScenes Radar Dataset

To further examine the generalization capability and real-world
applicability of DB-PointNet++, we extended evaluations to the
publicly available nuScenes dataset [89]. Developed by Motional
(formerly nuTonomy), nuScenes is a large-scale, multi-modal bench-
mark designed for autonomous driving research. It comprises 1, 000
annotated driving scenes, each 20 seconds long, collected from
Boston and Singapore—two dense urban environments with complex
traffic conditions. The dataset provides diverse scenarios, including
variations in weather, lighting, road infrastructure, and traffic behav-
iors, making it a challenging testbed for perception algorithms under
real-world conditions.

In our experiments, we selected three forward-facing radars (Front,
Front-Left, Front-Right) from the nuScenes sensor suite, whose
spatial configuration—shown in Fig. 19—closely resembles the three-
radar setup in our simulated dataset. However, because their fields
of view overlap minimally (Fig. 20), the PointNet++&PnP-based
registration method could not be applied. Instead, we employed rigid-
body transformations to register the Front-Left and Front-Right radars
into the Front radar’s coordinate frame, enabling consistent cross-
sensor fusion despite the limited overlap.

To emulate spoofing, we used Unity to generate high-fidelity radar
point clouds of vehicles and pedestrians. Since nuScenes radar data is
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Figure 16: Comprehensive performance of DB-PointNet++ under spoofing attacks across targets (vehicles, pedestrians) and radar resolutions
(high vs. low) evaluated on a simulated radar dataset. Subplots (a)—(d) report displacement scenarios and (e)—(h) report rotation scenarios;
each subplot summarizes classification error, F1-score, and recall. As attack magnitude increases, errors decrease while F1 and recall rise.
High-resolution radar consistently outperforms low-resolution, and vehicles are easier to detect than pedestrians. Rotation-based perturbations
yield more modest gains than displacement, reflecting subtler geometric changes in the point clouds.
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Figure 17: Performance and error profile of DB-PointNet++ for radar
spoofing detection evaluated on a simulated radar dataset.. Subplot (a)
summarizes overall performance metrics, reporting accuracy of 65%,
precision of 62%, recall of 79%, and Fl-score of 69%, reflecting
a high-recall/low-precision operating regime. Subplot (b) highlights
the error profile, with classification error of 35%, FPR of 49%, and
FNR of 21%, indicating that while missed detections are relatively
controlled, the false alarm rate remains comparatively high and
requires further optimization for safety-critical deployment.

sparse (100-1, 000 points per frame), we applied FPS to downsam-
ple the Unity-generated clouds, ensuring density consistency across
genuine and spoofed sources. Spoofed targets were injected into two
radar streams, while the third radar received a spatially perturbed
version (displacement or rotation) to simulate a compromised sensor.
Perturbation parameters were aligned with those in the simulated
dataset for fair comparison.

On the simulated dataset, DB-PointNet++ achieves near-ideal per-

formance, confirming its ability to exploit cross-radar consistency un-
der controlled conditions. In contrast, performance drops significantly
on nuScenes: Genuine samples reach 79.2% accuracy, while spoofed
categories achieve only 47-65% (Fig. 21), exposing a substantial sim-
ulation to reality (Sim2Real) generalization gap. The row-normalized
confusion matrix shows that A-spoofed is recognized correctly only
47.3% of the time, often confused with B- or C-spoofed, while
C-spoofed suffers even higher ambiguity (50.8% correct, ~30%
mislabeled as Genuine or A). B-spoofed performs comparatively
better (65.4%), though misclassifications remain around 20%. These
results demonstrate limited capability in differentiating attack types
in real-world settings.

The performance gap underscores the challenges of Sim2Real
transfer. In practice, calibration errors, time synchronization offsets,
and complex propagation effects (multipath, scattering) weaken the
reliability of cross-radar consistency, leading to degraded robustness.

Fig. 22a presents the overall binary ROC, where the global AUC
decreases from 0.836 in simulation to 0.680 on the nuScenes dataset,
reflecting a substantial degradation under real-world conditions. The
Youden point of nuScenes provides a balanced trade-off between sen-
sitivity and specificity, whereas the recall-oriented point emphasizes
safety-critical detection at the expense of higher false-alarm rates.

Fig. 22b further compares displacement and rotation spoofing
attacks. Displacement achieves a higher AUC of 0.822 than rotation
(0.766), as it introduces more pronounced geometric inconsistencies
across radars, while rotation primarily perturbs local surface orien-
tations that are less reliable under measurement noise. Notably, the
performance decline from simulation to nuScenes is consistent across
both attack types, reinforcing the presence of a Sim2Real domain gap.

Finally, Fig. 22c—e illustrate the per-class ROC curves. Across
all spoofing classes, the simulated dataset consistently outperforms
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Figure 18: Performance comparison between binary and multi-class classification of DB-PointNet++ under spoofing attacks evaluated on a
simulated radar dataset.. Subplots (a)-(d) report accuracy, classification error, recall, and FNR separately for vehicles and pedestrians under
both high- and low-resolution radar settings. Results show that while binary classification is generally more stable, multi-class classification
yields advantages in certain scenarios, such as pedestrian detection at high resolution, thereby highlighting the trade-offs between coarse
attack detection and fine-grained spoof type discrimination.
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Figure 19: Physical layout of the sensors on the nuScenes au-
tonomous vehicle. The three forward-facing radars (Front, Front-
Left, and Front-Right), highlighted in red circles, are selected as the
primary sources of radar point cloud data in our experiments. This
configuration closely mirrors the simulated three-radar setup used
in our simulated dataset, enabling direct cross-validation between
simulation and real-world scenarios. By designating the Front radar
as the reference and geometrically aligning the other two radars,
consistent cross-sensor fusion can be achieved despite the sparse and
heterogeneous radar detections in nuScenes.

the nuScenes dataset. For example, A-spoofed drops from 0.755
to 0.672, B-spoofed from 0.835 to 0.751, and C-spoofed from
0.767 to 0.701. This systematic degradation highlights the difficulty
of transferring models trained in clean, noise-free simulation envi-
ronments to real radar data characterized by sensor noise, sparse
sampling, and imperfect calibration. Among the three classes, B-
spoofed maintains the highest separability in both domains, suggest-
ing that vehicle-like targets exhibit more stable geometric patterns
and stronger radar reflections, making them less affected by domain
shift. Conversely, A- and C-spoofed suffer greater confusion with
genuine targets—particularly in nuScenes—underscoring the need for
enhanced feature discrimination and improved domain generalization
strategies to achieve robust multi-class spoofing detection.

Further evaluation in Fig. 23 confirms that detection improves as
perturbation magnitude increases. For vehicles under displacement,
accuracy grows from ~68% (2m) to over 78% (20m), with both
FPR and FNR dropping steadily. In contrast, pedestrian spoofing
remains challenging, especially under rotation, where recall stays low
and FNR/FPR remain near 80% at 30°. With larger perturbations
(e.g., 90° rotations), vehicle detection improves substantially (recall

Figure 20: Angular coverage of the forward-facing radars in the
nuScenes dataset. The fields of view of the Front, Front-Left, and
Front-Right radars exhibit only limited overlap, particularly in the
frontal direction. This restriction undermines the applicability of
feature-space registration methods (e.g., PointNet++ with PnP align-
ment), which rely on substantial inter-sensor overlap for robust point
cloud matching. Consequently, rigid-body transformations are instead
applied to align the radar streams into a unified coordinate frame.
The figure highlights the inherent challenge of achieving accurate
multi-view fusion in sparse real-world radar setups, in contrast to the
idealized overlaps assumed in simulation.

>80%), while pedestrian performance, though improved, remains
limited due to small radar cross-sections and noisy signatures.

Fig. 24a-b show that both vehicles and pedestrians follow a
“larger shift, easier detection” pattern. For vehicles, increasing the
displacement from 2m to 20 m reduces the classification error from
0.42 to 0.29, raises the F1 score from 0.62 to 0.72, and lifts recall
from 0.69 to 0.78. These trajectories are smooth and monotonic, indi-
cating stable robustness to displacement magnitude. For pedestrians,
classification error declines from 0.31 to 0.24 and F1 improves from
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Figure 21: Confusion matrices of DB-PointNet++ evaluated on the nuScenes real-world dataset. Subplot (a) shows the absolute prediction
counts, while subplot (b) presents the row-normalized percentages, which reveal stronger misclassification tendencies compared to the
simulated dataset. In particular, the spoofed classes exhibit lower recognition rates and higher confusion with both genuine and other
spoofing categories, highlighting the performance degradation and generalization challenges in real-world scenarios.

0.60 to 0.75; recall peaks at 0.69 around 10m and then slightly
drops to 0.55 at 20m, suggesting an edge effect at extreme shifts
(e.g., distribution sparsity or over-decoupled geometry). To stabilize
recall at these extremes while preserving the overall upward trend,
displacement-aware thresholds, spatiotemporal cross-radar priors, and
trajectory-level constraints are recommended.

Fig. 24c—d indicate that model separability increases consistently
as the rotation angle grows from 30° to 90°. For vehicles, the
classification error decreases from 0.45 to 0.41, the F1 score rises
from 0.60 to 0.65, and recall improves from 0.62 to 0.82. For
pedestrians, the improvements are more pronounced: error drops from
0.51 to 0.39, F1 increases from 0.41 to 0.61, and recall climbs
from 0.27 to 0.80. These trends indicate that larger rotations more
severely disrupt cross-radar geometric consistency, making spoofed
point clouds easier to detect. The gain in recall outpacing the gain
in F1 also reveals a residual precision—recall tension at high-recall
operating points, motivating precision control, confidence calibration,
and multi-view consistency regularization to curb false alarms without
sacrificing safety.

Despite the sparse and noisy nature of nuScenes radar data, DB-
PointNet++ exhibits consistent robustness, particularly for stronger
perturbations and rigid targets such as vehicles. At the same time,
the marked performance gap between simulation and real-world data
underscores the challenges of Sim2Real transfer. Improving feature
robustness, incorporating temporal and Doppler cues, and leveraging
multi-sensor fusion will be essential for practical deployment in
autonomous driving, where the security and reliability of radar
perception are critical.

C. Cross-Radar Centroid Distance Detector

To compare with the proposed DB-PointNet++, we introduce an
optimistic and computationally efficient baseline, namely the cross-
radar centroid distance detector (CRCDD). Given known radar ex-
trinsics and object correspondences, CRCDD computes the centroid
of each object for every radar, aligns the centroids from radars A
and C to the coordinate frame of radar B, and detects a potential

displacement attack when the Euclidean distance between a radar’s
transformed centroid and the reference centroid (from radar B)
exceeds a predefined threshold. This method is simple, interpretable,
and serves as a useful geometric baseline for evaluating displacement-
type spoofing attacks in multi-radar systems.

The CRCDD is designed as a lightweight geometric defense that
relies on radar-level spatial consistency rather than learned repre-
sentations. When extrinsic calibration between radars is available
and object correspondences can be approximately established, the
algorithm assesses the approximate geometric consistency of object
centroids across radars. Since radar point clouds are inherently sparse
and each sensor illuminates different surface patches, exact centroid
invariance cannot be guaranteed; however, significant deviations from
expected centroid proximity can still indicate potential spoofing.

Assume N, radars (e.g., A, B, C), each observing an object o with
a point cloud Py = {xi1,Xi,2,...,Xin,; }, where x; 5 € R3. The
algorithm outputs an anomaly score s, and an alarm flag defined as:

1 o ,
alarm(o) :{ y S >Tt(0)

39
0, s0< Tt(0)» 39

where 7;(,) denotes the decision threshold specific to the object type
t(o) (e.g., vehicle or pedestrian).

Under normal conditions, the centroids of the same object observed
by different radars should be spatially close once all observations
are transformed into a common coordinate frame. If a displacement
spoofing attack occurs, the centroid of the spoofed radar will deviate
significantly from the reference centroid:

lle? — cBllz > 7o), (40)

where c% denotes the reference centroid in radar B coordinates, and
¢y is the transformed centroid from radar 7.
For each radar ¢ and object o, the centroid is computed as:

1
o _ .
< = Tpo] > xike (41)
X4,k EPZ-O
Using known extrinsic transformations T;—p = [Ri-g|ti-B],
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Figure 22: ROC curves of DB-PointNet++ evaluated on the nuScenes real-world dataset under different spoofing detection settings. (a)
Binary spoofing detection reports an overall AUC of 0.680, with two operating points highlighted: the Youden point (I'PR = 64.9%,
FPR = 31.7%) balancing sensitivity and specificity, and the business-oriented point (I'PR = 96.5%, FPR = 83.7%) prioritizing high
recall at the expense of false alarms. (b) Comparison between displacement- and rotation-based attacks demonstrates that displacement is
easier to detect (AUC' = 0.822) than rotation (AUC = 0.766), as displacement introduces more severe disruptions to cross-radar geometric
consistency. (c-e) One-vs-rest multi-class spoofing detection shows class-dependent separability, with B-spoofed achieving the highest AUC
(0.751), followed by C-spoofed (0.701) and A-spoofed (0.672), indicating greater difficulty in discriminating A- and C-spoofed attacks.

the centroids from radars A and C are mapped into radar B’s
coordinate frame:

éf =R;.B Cf +tinp, € {A, C} 42)
The per-radar distance to the reference centroid is:
d; =||e] — cBll2, i€ {A,C}. (43)

The overall anomaly score is defined as the maximum spatial

deviation:

S0 = max dy. (44)
i€{A,C}

The threshold 7, is empirically determined from clean validation

data for each object type ¢(0):

Ti(oy = Percentile, (so<"(¢(0))), p € [95,99)]. (45)

The complete CRCDD decision rule is therefore summarized as:
o= T; ;) — B2, 1 =I[so ol
so= max [Tp(el) = chllar  alarm(o) = Ils > i)

(46)

This formulation leverages cross-radar centroid consistency and
employs type-specific thresholds to detect displacement attacks in a
physically interpretable and computationally efficient manner, , as
detailed in Algorithm 2.

Following the description of the CRCDD algorithm, we now
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Figure 23: Detection performance of DB-PointNet++ on the nuScenes dataset under spoofing attacks with varying displacement distances
and rotation angles. Subplots (a)—(d) show detection accuracy, FPR, and FNR for vehicles and pedestrians separately. Results indicate that
vehicle spoofing becomes easier to detect with increasing perturbation magnitude, while pedestrian detection remains limited, particularly
under rotation-based attacks where both FPR and FNR stay high. Overall, displacement attacks are more readily identifiable than rotations,
and DB-PointNet++ demonstrates stronger robustness for rigid targets such as vehicles compared to pedestrians.
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Figure 24: Classification error, Fl-score, and recall of DB-PointNet++ under spoofing attacks with varying displacement distances and
rotation angles evaluated on the nuScenes real-world dataset. Subplots (a)-(d) compare vehicles and pedestrians under displacement- and
rotation-based perturbations. Results indicate that vehicle spoofing is generally easier to detect, with lower classification error and higher
Fl/recall as perturbation magnitude increases. In contrast, pedestrian spoofing remains more challenging, particularly under rotation attacks,
underscoring the model’s difficulty in handling fine-grained geometric distortions for small, sparse targets. Overall, displacement attacks are
more readily identifiable than rotations, highlighting the relative vulnerability of DB-PointNet++ to angular perturbations.

present its experimental performance and compare it with the pro-
posed DB-PointNet++ method. This comparison aims to evaluate the
relative effectiveness of the geometric consistency—based baseline
(CRCDD) and the learning-based detector (DB-PointNet++) under
identical multi-radar spoofing scenarios. In this study, we focus
exclusively on displacement-based radar spoofing attacks, where the
spoofed radar reports shifted object positions while maintaining
otherwise realistic point cloud structures. This restriction allows for a
fair and controlled comparison between the two detection paradigms
in analyzing geometric deviations caused by spatial misalignment
rather than by more complex signal manipulations.

Fig. 25a presents the overall detection performance of CRCDD
evaluated on both the simulated and nuScenes datasets. As a purely
geometric approach, CRCDD detects potential spoofing attacks by
measuring spatial inconsistencies between radar-level object centroids
without any learned representation. The results show limited discrimi-
native capability, achieving an AUC of 0.616 on the simulated dataset
and 0.510 on the nuScenes dataset. The significant performance drop
from simulation to real-world data reveals the sensitivity of CRCDD
to measurement noise, calibration errors, and imperfect radar-to-radar
correspondences in practice.

When compared with the learning-based DB-PointNet++ model,

which achieves an AUC of 0.836 on the same simulated dataset,
CRCDD exhibits considerably weaker separability between genuine
and spoofed radar measurements. This gap of more than 0.20 in
AUC demonstrates that, although centroid-based geometric reasoning
can capture coarse spatial deviations, it lacks the feature abstraction
and nonlinear decision boundaries learned by DB-PointNet++. Con-
sequently, CRCDD can serve as a transparent and computationally
efficient baseline but fails to exploit the complex intra-object spa-
tial structures that DB-PointNet++ leverages for accurate spoofing
discrimination.

Under real-world conditions, the performance gap becomes even
more pronounced. DB-PointNet++ maintains an AUC of 0.680 on the
nuScenes dataset, whereas CRCDD drops to 0.510, nearly approach-
ing random-guessing performance. This degradation confirms that
geometric consistency alone is insufficient to counteract domain shifts
caused by sensor noise, imperfect synchronization, and environmental
clutter. In contrast, DB-PointNet++ demonstrates stronger generaliza-
tion through learned spatial representations and dual-supervision reg-
ularization, highlighting the robustness of learning-based approaches
in cross-domain spoofing detection.

Fig. 25b-25d further present the per-class ROC performance of
CRCDD on both datasets. As a geometry-only method, CRCDD
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Figure 25: ROC analysis of the proposed CRCDD on both simulated and real-world datasets. (a) The overall binary spoofing detection
performance shows limited separability, with AUC values of 0.616 on the simulated dataset and 0.510 on the nuScenes dataset, indicating
notable degradation under real-world conditions. (b-d) The per-class ROC curves further highlight the reduced discriminability of CRCDD
across different spoofing types, where B-spoofed achieves the highest AUC (0.682 on simulation, 0.606 on nuScenes), followed by C-
and A-spoofed classes. Compared with learning-based models, CRCDD remains interpretable and computationally lightweight but is more
sensitive to noise, calibration errors, and imperfect object correspondences in real environments.

relies solely on centroid-level spatial consistency across radars rather
than feature learning. On the simulated dataset, the AUCs for A-, B-,
and C-spoofed categories are 0.601, 0.682, and 0.639, respectively,
suggesting only moderate separability. Among them, the B-spoofed
class achieves the highest performance, likely because displacement
perturbations in this configuration cause more pronounced centroid
shifts, while A- and C-spoofed attacks remain harder to identify due
to smaller geometric deviations. When tested on the nuScenes dataset,
all three classes exhibit reduced discriminability, with AUCs dropping
to 0.552, 0.606, and 0.584. This decline highlights CRCDD’s vulner-
ability to real-world imperfections, where ideal geometric alignment
rarely holds due to calibration drift and dynamic environmental noise.

When compared with DB-PointNet++ on the same simulated
dataset, the advantage of learned representations becomes evident.
DB-PointNet++ achieves AUCs of 0.755, 0.835, and 0.767 for A-
, B-, and C-spoofed categories, outperforming CRCDD by roughly
0.15-0.20 in AUC across all classes. This margin demonstrates that
deep spatial feature learning effectively enhances class-wise sepa-
rability even under controlled simulated conditions. While CRCDD
captures only macroscopic centroid displacement, DB-PointNet++
extracts finer intra-object features and contextual cues that improve
discrimination between genuine and spoofed radar point clouds.

Under real-world conditions, this difference persists. DB-
PointNet++ achieves per-class AUCs of 0.672 (A-spoofed), 0.751
(B-spoofed), and 0.701 (C-spoofed), maintaining robust performance
despite environmental uncertainty. In contrast, CRCDD’s results drop
to 0.552, 0.606, and 0.584, approaching random-level separability.
These findings confirm that geometric consistency—based detectors
cannot effectively handle complex domain shifts or sensor imper-
fections, whereas deep learning—based methods can learn invariant
representations and adapt to heterogeneous radar configurations.

In summary, while the proposed CRCDD offers interpretability,
efficiency, and serves as a meaningful geometric baseline, its re-
liance on centroid-level consistency limits its detection accuracy
and generalization capability. The learning-based DB-PointNet++,
by contrast, benefits from hierarchical feature extraction and dual-
supervised training, enabling it to capture subtle geometric distor-
tions and maintain robustness across both simulated and real-world
domains. Overall, these comparative results emphasize that deep
learning approaches, though computationally heavier, provide a more
practical and resilient solution for multi-radar spoofing detection in

realistic driving environments.

D. Performance Evaluation under Minor Perturbation Attacks

To rigorously evaluate the robustness of the proposed model
against fine-grained geometric perturbations in realistic settings, we
design a gradient-based point cloud perturbation framework [90]. This
framework operates on radar point clouds from the nuScenes dataset
that already include embedded spoofing targets, and applies localized
transformations—namely slight rotations, small translations, and uni-
form scalings—on predefined groups of points. These perturbations
are carefully constrained to preserve the overall geometric structure
while inducing targeted misclassification.

In constructing the perturbed dataset, we follow the single-
compromised-radar assumption, where only one radar is adversarially
manipulated at a time while the remaining two function normally.
High-fidelity radar point clouds of vehicles and pedestrians are
generated using Unity to simulate spoofed echoes. Because the
native nuScenes radar data are inherently sparse (typically 100-1, 000
detections per frame), FPS is applied to the dense Unity-generated
point clouds to ensure consistent point density across sources. The
sampled spoofed targets are then injected into two of the three
radar streams, while the third stream receives a spatially transformed
version—either displaced or rotated—and is further augmented with
minor perturbations to emulate the compromised sensor. This pro-
cedure yields a perturbed extension of the nuScenes dataset that
incorporates minor perturbation attacks for subsequent robustness
evaluation.

Formally, each input point cloud is partitioned into a set of local
groups, with each group associated with a set of trainable trans-
formation parameters. An adversarial objective function is defined
by combining a misclassification-oriented loss term with geometric
regularization constraints. These transformation parameters are op-
timized via gradient descent to maximize classification error while
minimizing geometric distortion.

During optimization, the point cloud is iteratively updated until
convergence or early stopping criteria are met. The resulting adver-
sarial samples are then saved and evaluated using the DB-PointNet++
model. This framework provides a principled approach to crafting
localized geometric attacks and supplies reliable adversarial data for
downstream robustness analysis.

o Perturbation Modeling



Algorithm 2: Cross-Radar Centroid Distance Detector (CR-
CDD)

Input: Per-frame per-radar point clouds {P;};c(a,5,0};

object correspondence list O;

extrinsic transforms T;_, p; type-specific thresholds {7}

with ¢ € Types.

Output: Per-object anomaly flag alarm(o) € {True, False}
and anomaly score s,.

1 foreach object o € O do

2 | Let V<« {ic{ABC}| P #0};

3 | if |[V] <2 then

4 L alarm(o) < False, s, < 0; continue;

// Centroids in native radar frames
5 foreach : € V do

1 .
6 L c 1d erP;’ X;
// Map to radar-B coordinates when
needed
7 foreach i € V' \ {B} do
8 | &« Tisp(c));

// Choose reference centroid

9 if B € V then

10 ‘ chp ¢, U<+ V\{B};

11 else

12 | pickany j € V; ¢ € U« V\{j}

// Per—-radar distances in the common

frame
13 foreach i € U do
14 L dj < Héf — cfcf’ 2
// Max aggregation (used in our
implementation)
15 So ¢ max;cy di;

// Type-specific thresholding
16 | alarm(0) < (S0 > Ti(0)):
17 output (alarm(o), so);

return alarms and scores

—
o«

Let the input point cloud be denoted by P = {x; € R3}}L,,
where each point x; = [x;,1:,2:]" represents a 3D coordinate.
To introduce localized and structured perturbations, P is partitioned
into G disjoint groups G1, Ga, . . ., Gg using either frame-index-based
slicing or PCA-driven segmentation.

For each group G4, we define a parameter set:

o 04 € R: rotation angle around the z-axis,

e 54 € RT: isotropic scaling factor,

o 0z,9,0y,9 € R: translation along the x and y axes.

The transformation applied to each point x; € G, proceeds as:

1) Compute the geometric center of the group:

1
Cs = o >ox 47)
[AR
2) Apply scaling:
X; =84 (Xi — Cg) (48)
3) Apply 2D rotation in the z—y plane:
cosf; —sinfy 0
Ry = [sinfy cosfy O (49)
0 0 1

x! =Ry - X (50)

4) Apply translation and restore original center:

Xi = X; + Cg + (02,9, 0y.9,0]" (51)
5) Clip the total displacement to maintain imperceptibility:
|%i — xi||]2 <e, =02 (52)

o Loss Function Design

To achieve adversarial misclassification while maintaining geomet-
ric plausibility, we define the overall loss function as:

£altack = [fcls + )\GRQ + )\th + )\sRs (53)
where the individual terms are defined as follows:
o Classification Loss:
Lgs = max (fy — max f;, —K) (54)
J#y

where f, is the predicted logit for the true class y, and f; is
the logit for class j # y. k is a confidence margin controlling
the strength of misclassification.

« Rotation Regularization:

G
Ro = 62 (55)
g=1
o Translation Regularization:
G
Ri=> (024+05,) (56)
g=1
« Scaling Regularization:
G
Rs =Y (54— 1)° (57)
g=1

Here, Ao, A¢, and A, are non-negative hyperparameters that control
the trade-off between attack success and perturbation magnitude.

o Optimization Procedure

All transformation parameters are initialized to identity values:
0, = 0, sy = 1, and 5,4y = 6y,q = 0. During each iteration,
the attack loss Lauack 1S computed and minimized using the Adam
optimizer with learning rate 7:

¢(t+1) _ ¢(t)

-n- v¢£anack (58)

where ¢ denotes the full set of transformation parameters.

The optimization is terminated early if the classifier predicts a
label different from the original ground truth, indicating a successful
adversarial perturbation, as detailed in Algorithm 3.

After applying the group-wise perturbation algorithm to the
nuScenes dataset, we evaluated the performance of DB-PointNet++
under subtle geometric disturbances. Fig. 26 illustrates the evolution
of training and testing instance accuracy, along with corresponding
loss values, over 200 training epochs.

Both the training and test losses exhibit a rapid initial decline and
converge after approximately 100 epochs, indicating that the model
can fit the perturbed samples and generalize to some extent. However,
the converged loss values remain relatively high—around 1.0 for
training and 0.9 for testing—suggesting that the model still struggles
to confidently discriminate between classes under perturbation.

In terms of classification accuracy, the training instance accuracy
plateaus at approximately 46%, while the test accuracy stabilizes
slightly higher at around 52%. Given that this is a four-class
classification task (with a random-guessing baseline of 25%), the
performance is modest. While the results exceed random prediction,



Algorithm 3: Group-wise Geometric Perturbation Attack

Input: Point cloud P = {x;},, true label y, classifier Z(-),
perturbation budget ¢, learning rate 7, max iterations
T
Output: Perturbed point cloud P
1 Group Partition: divide P into G groups Gi,...,Ga;
2 Initialize: for all g, set 04 <— 0, sg < 1, 0z,9,0y,9 < 0;
3fort=1to T do

4 foreach g = 1 to GG do
5 Compute group centroid: cg <— ﬁ inegq Xi;
6 foreach x; € G, do \ »
7 Apply scaling: xj < s4 - (X; — Cg);
cosfy —sinf; O
8 Apply rotation: Ry <— |sinfy  cosfy O0f;
0 0 1
9 xi « Ry - x};
10 Apply translation and restore center:
%i ¢ X! + g+ [0a,g,0y,9,01";
1 Clip displacement: if ||X; — X;||2 > ¢ then
12 L Scale displacement to enforce e-limit

13 Aggregate perturbed point cloud: P+ {&;}V;;

14 Forward pass: f = Z(f’);

15 Compute loss: Lagack < max(fy — max,-y fj, —k) +

>\9 Zg 9; + )\t Zg(égvg + 55,!]) + >\5 Zg(sg - 1)2’

16 Update parameters {0y, Sg, 0z,g, 0y,g} via Adam

optimizer with 7;

17 if arg max; f; # y then

18 break;
L ; // Terminate if attack is successful

19 return P

they fall short of what would be considered acceptable for real-world
deployment.

A closer inspection reveals why such minor perturbations can
still impose substantial difficulty. The injected geometric noise inter-
feres with the initial assignment of point-level labels during feature
abstraction, subtly altering local neighborhoods and occasionally
shifting points across decision boundaries in the learned feature space.
At the same time, the perturbations slightly modify global density
statistics—features explicitly leveraged by the auxiliary loss in DB-
PointNet++—thereby weakening the model’s ability to exploit density
consistency as a discriminative cue. These dual effects compound,
resulting in degraded separability across spoofed and genuine classes
even when the perturbations appear visually insignificant.

Notably, the absence of a significant accuracy gap between training
and testing suggests that the model does not overfit to the perturbed
data. Instead, the limited accuracy appears to stem from reduced input
discriminability and insufficient robustness of the model to small-
scale geometric variations.

In summary, the experiment confirms that the proposed pertur-
bation strategy imposes a substantial challenge to DB-PointNet++,
significantly degrading its classification performance. The results
highlight the model’s limited robustness to fine-grained structural
distortions and density fluctuations, underscoring the need for more
geometry-aware architectures or stronger regularization mechanisms
to improve resilience in real-world conditions.
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Figure 26: Training and testing performance of the model on the
perturbed NuScenes dataset. The purple and light blue curves repre-
sent training and test losses, while the dark purple and dark blue
curves indicate training and test instance accuracies, respectively.
The metrics converge over time, but overall performance remains
moderate.

VI. CONCLUSION

This paper proposed a multi-radar spoofing detection framework
that integrates PointNet++ with PnP point cloud registration, ad-
dressing the challenges of multi-view alignment and robust feature
extraction. On this basis, we developed DB-PointNet++, which incor-
porates DBSCAN clustering and density-aware feature enhancement
to generate more discriminative point cloud representations. The
proposed framework effectively captures structural consistency while
highlighting spoofing-induced anomalies, providing a novel approach
for multi-radar spoofing detection in autonomous driving scenarios.

Experimental results on the simulated dataset demonstrated strong
performance. The binary classification task (genuine vs. spoofed)
achieved an accuracy of about 92%, with an ROC AUC of 0.836,
and reached TPR=88.9% and FPR=34.1% at the optimal operating
point. In comparison, the four-class task (genuine, A/B/C spoofed)
yielded an overall accuracy of 70.5%, where Genuine and B-spoofed
achieved the highest recognition rates (82% and 78%), while A- and
C-spoofed remained confusable. These findings indicate that binary
classification provides better stability and accuracy, whereas four-
class classification offers valuable source attribution.

Further validation on the nuScenes real-world dataset revealed per-
formance degradation under sparse radar conditions. Binary detection
accuracy dropped to about 52% with an AUC of 0.680; in the four-
class setting, B-spoofed achieved an AUC of 0.751, while A- and
C-spoofed only reached 0.672 and 0.701. These results highlight
that while the framework shows strong robustness in high-resolution
simulated scenarios, real-world conditions pose challenges such as
sparsity, noise, and sensor limitations.

In conclusion, the proposed framework demonstrates the feasibility
of combining PointNet++ feature extraction with PnP-based registra-
tion for multi-radar spoofing detection. Binary detection proves more
suitable for real-time, safety-critical deployment, while four-class
classification, though less accurate, provides spoof-source attribution
useful for downstream defense strategies. Future work will focus
on three directions: (1) integrating multi-sensor fusion (e.g., camera



and

LiDAR) to alleviate radar sparsity, (2) incorporating temporal

consistency constraints to enhance robustness in dynamic scenarios,
and (3) leveraging adversarial training and hard-sample mining to
improve generalization under real-world spoofing attacks.
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